[1] Slovic P, Flynn J H and Layman M. Perceived risk, trust, andthe politics of nuclear waste. Science, 1991, 254: 1603–1607.DOI: 10.1126/science.254.5038.1603[2] Bo A, Sarina S, Zheng Z F, et al. Removal of radioactive iodinefrom water using Ag2O grafted titanate nanolamina asefficient adsorbent. J Hazard Mater, 2013, 246: 199–205. DOI:10.1016/j.jhazmat.2012.12.008[3] Chapin D M, Cohen K P, Davis W K, et al. Nuclear safety -nuclear power plants and their fuel as terrorist targets. Science,2002, 297: 1997–1999. DOI: 10.1126/science.1077855[4] Burns P C, Ewing R C and Navrotsky A. Nuclear fuel ina reactor accident. Science, 2012, 335: 1184–1188. DOI:10.1126/science.1211285[5] Sava D F, Rodriguez M A, Chapman K W, et al. Capture ofvolatile iodine, a gaseous fission product, by zeolitic imidazolateframework-8. J Am Chem Soc, 2011, 133: 12398–12401.DOI: 10.1021/ja204757x[6] Buesseler K, Aoyama M and Fukasawa M. Impacts ofthe Fukushima nuclear power plants on marine radioactivity.Environ Sci Technol, 2011, 45: 9931–9935. DOI:10.1021/es202816c[7] Hou X L, Povinec P P, Zhang L Y, et al. Iodine-129 in seawateroffshore Fukushima: distribution, inorganic speciation,sources, and budget. Environ Sci Technol, 2013, 47: 3091–3098. DOI: 10.1021/es304460k[8] Chino M, Nakayama H, Nagai H, et al. Preliminary estimationof release amounts of I-131 and Cs-137 accidentally dischargedfrom the Fukushima Daiichi nuclear power plant intothe atmosphere. J Nucl Sci Technol, 2011, 48: 1129–1134.DOI: 10.1080/18811248.2011.9711799[9] Yoshida N and Kanda J. Tracking the Fukushima radionuclides.Science, 2012, 336: 1115–1116. DOI: 10.1126/science.1219493[10] Kawamura H, Kobayashi T, Furuno A, et al. A methodologyfor scenario development based on understanding of long-termevolution of geological disposal systems. J Nucl Sci Technol,2012, 48: 1349–1356. DOI: 10.1080/00223131.2012.693884[11] Deitz V R. Interaction of radioactive iodine gaseous specieswith nuclear-grade activated carbons. Carbon, 1987, 25: 31–38. DOI: 10.1016/0008-6223(87)90037-6[12] Chien C C, Huang Y P, Wang W C, et al. Efficiency of mosobamboo charcoal and activated carbon for adsorbing radioactiveiodine. Clean-Soil Air Water, 2011, 39: 103–108. DOI:10.1002/clen.201000012[13] Kosaka K, Asami M, Kobashigawa N, et al. Removal of radioactiveiodine and cesium in water purification processesafter an explosion at a nuclear power plant due to the GreatEast Japan Earthquake.Water Res, 2012, 46: 4397-4404. DOI:10.1016/j.watres.2012.05.055[14] Guczi J, Angelova A, Bulman R A, et al. Investigation of theinteractions of 110mAg+ and 125I– with humic-acid chemicallyimmobilized on silica-gel. Reactive Polymers, 1992, 17: 61–68. DOI: 10.1016/0923-1137(92)90570-R[15] Sakurai T, Takahashi A, Ye M L, et al. Trappingand measuring radioiodine (iodine-129) in cartridgefilters. J Nucl Sci Technol, 1997, 34: 211–216. DOI:10.1080/18811248.1997.9733648[16] Sarri S, Misaelides P, Noli F, et al. Removal of iodidefrom aqueous solutions by polyethylenimine-epichlorohydrinresins. J Radioanal Nucl Chem, 2013, 298: 399–403. DOI:10.1007/s10967-013-2662-0[17] Usseglio S, Damin A, Scarano D, et al. (I2)(n) encapsulationinside TiO2: A way to tune photoactivity in the visibleregion. J Am Chem Soc, 2007, 129: 2822–2828. DOI:10.1021/ja066083m[18] Yang D J, Sarina S, Zhu H Y, et al. Capture of radioactive cesiumand iodide ions from water by using titanate nanofibersand nanotubes. Angew Chem Int Ed, 2011, 50: 10594–10598.DOI: 10.1002/anie.201103286[19] Yang D J, Liu HW, Zheng Z F, et al. Titanate-based adsorbentsfor radioactive ions entrapment from water. Nanoscale, 2013,5: 2232–2242. DOI: 10.1039/c3nr33622k[20] Yang D J, Liu H W, Liu L, et al. Silver oxide nanocrystalsanchored on titanate nanotubes and nanofibers: promising candidatesfor entrapment of radioactive iodine anions. Nanoscale,2013, 5: 11011–11018. DOI: 10.1039/c3nr02412a[21] Huang R J, Hou X L and Hoffmann T. Extensive evaluation ofa diffusion denuder technique for the quantification of atmosphericstable and radioactive molecular iodine. Environ SciTechnol, 2010, 44: 5061–5066. DOI: 10.1021/es100395p[22] Faghihian H, Maragheh M G and Malekpour A. Adsorption ofradioactive iodide by natural zeolites. J Radioanal Nucl Chem,2002, 254: 545–550. DOI: 10.1023/A:1021698207045[23] Warchol J, Misaelides P, Petrus R, et al. Preparation and applicationof organo-modified zeolitic material in the removalof chromates and iodides. J Hazard Mater, 2006, 137: 1410–1416. DOI: 10.1016/j.jhazmat.2006.04.028[24] Watanabe Y, Ikoma T, Yamada H, et al. Novel long-term immobilizationmethod for radioactive iodine-129 using a Zeolite/Apatite composite sintered body. ACS Appl Mater Interfaces,2009, 1: 1579–1584. DOI: 10.1021/am900251m[25] Malik A A, Meddings P R, Patel A, et al. Competitive effectsin the adsorption of CH3I on KI-impregnated activated carbonsin the presence of CO2. Carbon, 1996, 34: 439–447. DOI:10.1016/0008-6223(95)00165-4[26] Kepak F. Removal of gaseous fission products by adsorption.J Radioanal Nucl Chem, 1990, 142: 215–230. DOI:10.1007/BF02039464[27] Gonzalez-Garcia C M, Gonzalez J F and Roman S. Removalefficiency of radioactive methyl iodide on TEDA-impregnatedactivated carbons. Fuel Process Technol, 2011, 92: 247–252.DOI: 10.1016/j.fuproc.2010.04.014[28] Hoskins J S and Karanfil T. Removal and sequestration of iodideusing silver-impregnated activated carbon. Environ SciTechnol, 2002, 36: 784–789. DOI: 10.1021/es010972m[29] Karanfil T, Moro E C and Serkiz S M. Development and testingof a silver chloride-impregnated activated carbon for aqueousremoval and sequestration of iodide. Environ Technol, 2005,26: 1255–1262. DOI: 10.1080/09593332608618595[30] Choi B S, Park G I, Lee J W, et al. Performance test of silverion-exchanged zeolite for the removal of gaseous radioactivemethyl iodide at high temperature condition. J Radioanal NuclChem, 2003, 256: 19–26. DOI: 10.1023/A:1023383505788[31] Garbarino G, Lagazzo A, Riani P, et al. Steam reforming ofethanol-phenol mixture on Ni/Al2O3: effect of Ni loading andsulphur deactivation. Appl Catal B-Environmental, 2013, 129:460–472. DOI: 10.1016/j.apcatb.2012.09.036[32] Lopez-Granada G, Barceinas-Sanchez J D O, Lopez R, etal. High temperature stability of anatase in titania-aluminasemiconductors with enhanced photodegradation of 2, 4-dichlorophenoxyacetic acid. J Hazard Mater, 2013, 263: 84–92. DOI: 10.1016/j.jhazmat.2013.07.060[33] Gudlur P, Muliana A and Radovic M. Effective thermomechanicalproperties of aluminum-alumina composites usingnumerical approach. Compos Part B-Eng, 2014, 58: 534–543.DOI: 10.1016/j.compositesb.2013.10.052 |