1 李惠彬. 高氡环境下钚气溶胶连续监测技术研究及设备研制[D]. 北京:清华大学, 2013. LI Huibin. Research on continuous plutonium aerosol monitor in high radon environment and equipment development[D]. Beijing:Tsinghua University, 2013.2 周程, 张起虹, 蒋云平, 等. 大气中放射性气溶胶的监测和评价[J]. 核技术, 2011, 34(11):866-871. ZHOU Cheng, ZHANG Qihong, JIANG Yunping, et al. Evaluation of radioactive aerosols in nuclear accident monitoring[J]. Nuclear Techniques, 2011, 34(11):866-871.3 Ryden D J, Courtenay S. Environmental radioactivity monitor[P]. U.S. Patent 6822235B2. 2004-11-23.4 Rajeswari K, Acharya O, Sharma M, et al. Improvement in K-means clustering algorithm using data clustering[C]. International Conference on Computing Communication Control and Automation, IEEE, 2015:367-369.5 吴健, 崔志明, 时玉杰, 等. 基于局部密度构造相似矩阵的谱聚类算法[J]. 通信学报, 2013, (3):14-22. WU Jian, CUI Zhiming, SHI Yujie, et al. Local density-based similarity matrix construction for pectral clustering[J]. Journal on Communications, 2013, (3):14-22.6 Tanzer A, Stadler P F. Molecular evolution of a microRNA cluster[J]. Journal of Molecular Biology, 2016, 339(2):327-335.7 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年:回顾与展望[J]. 计算机学报, 2016, 39(8):1697-1716. DOI:10.11897/SP.J.1016.2016.01697. JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Seventy years of neural network:review and prospect[J]. Chinese Journal of Computers, 2016, 39(8):1697-1716. DOI:10.11897/SP.J.1016.2016.01697.8 Chaipimonplin T. Investigation internal parameters of neural network model for flood forecasting at upper river ping, Chiang Mai[J]. KSCE Journal of Civil Engineering, 2016, 20(1):1-7. DOI:10.1007/s12205-015-1282-3.9 Chen H, Zeng Z, Tang H. Landslide deformation prediction based on recurrent neural network[J]. Neural Processing Letters, 2015, 41(2):169-178. DOI:10.1007/s11063-013-9318-5.10 李雷, 罗红旗, 丁亚丽. 一种改进的模糊 C 均值聚类算法[J]. 计算机技术与发展, 2009, 19(12):71-73. LI Lei, LUO Hongqi, DING Yali. An improved fuzzy C-means clustering algorithm[J]. Computer Technology and Development, 2009, 19(12):71-73.11 王振博. 模糊 C 均值聚类算法的研究与改进[D]. 郑州:郑州大学, 2014. WANG Zhenbo. The study and improvement of fuzzy C-means cluster algorithm[D]. Zhengzhou:Zhengzhou University, 2014. |