1 林支康, 殷煜皓, 梁国兴. AP1000核电厂RELAP5 SB-LOCA分析模式建立与应用[J]. 电力与能源, 2011, 6:457-461. LIN Zhikang, YIN Yuhao, LIANG Guoxing. Establishing and application of AP1000 nuclear power plant RELAPS-code SB-LOCA model[J]. Power & Energy, 2011, 6:457-461. 2 中广核工程有限公司. 中国百万千瓦级核电自主化依托工程[M]. 北京:中国原子能出版社, 2013. China Nuclear Power Engineering Co., Ltd. China's million kilowatt class nuclear power self-reliance project[M]. Beijing:China Atomic Energy Press, 2013. 3 Santosh T V, Vinod G, Saraf A K, et al. Application of artificial neural networks to nuclear power plant transient diagnosis[J]. Reliability Engineering and System Safety, 2007, 92:1468-1472. DOI:10.1016/j.ress.2006.10.009. 4 Cheon S W,Chang S H, Chung H Y, et al. Application of neural networks to multiple alarm processing and diagnosis in nuclear power plants[J]. IEEE Transactions on Nuclear Science, 1993, 40(1):11-20. 5 赵云飞, 张立国, 童节娟, 等. BP神经网络在AP1000核电站事故诊断应用中的初步研究[J]. 原子能科学技术, 2014, 48(S1):480-484. DOI:10.7539/YZK.2014.48. S0.0480. ZHAO Yunfei, ZHANG Liguo, TONG Jiejuan, et al. Preliminary study on application of BP neural network in AP1000 nuclear power plant accident diagnosis[J]. Atomic Energy Science and Technology, 2014, 48(S1):480-484. DOI:10.7539/YZK.2014.48.S0.0480. 6 蔡猛, 张大发, 张宇声. 基于遗传算法的核动力设备实时故障诊断系统[J]. 核动力工程, 2009, 30(3):111-114, 130. CAI Meng, ZHANG Dafa, ZHANG Yusheng. Nuclear power plant real-time fault diagnosis system based on genetic algorithm[J]. Nuclear Power Engineering, 2009, 30(3):111-114, 130. 7 刘永阔, 夏虹, 谢春丽, 等. BP-RBF神经网络在核电厂故障诊断中的应用[J]. 原子能科学技术, 2008, 42(3):193-199. LIU Yongkuo, XIA Hong, XIE Chunli, et al. Application of BP-RBF neural network to fault diagnosis of nuclear power plant[J]. Atomic Energy Science and Technology, 2008, 42(3):193-199. 8 肖岷, 郝思雄, 韩庆浩, 等. 中广核CPR1000核岛堆芯概念设计和安全裕度评估初探[J]. 核动力工程, 2005, (S1):11-18. XIAO Min, HAO Sixiong, HAN Qinghao, et al. Primary study on core concept design and safety margin of CPR1000[J]. Nuclear Power Engineering, 2005, (S1):11-18. 9 谢春丽, 夏虹, 刘永阔, 等. BP神经网络改进算法在核电设备故障诊断中的应用[J]. 核动力工程, 2007, 28(4):85-90. XIE Chunli, XIA Hong, LIU Yongkuo, et al. Application of improved BP algorithm in fault diagnosis of nuclear power equipment[J]. Nuclear Power Engineering, 2007, 28(4):85-90. 10 熊晋魁, 谢春玲, 施小成, 等. RBF人工神经网络在核电厂故障诊断中的应用[J]. 核动力工程, 2006, 27(3):57-60, 96. XIONG Jinkui, XIE Chunling, SHI Xiaocheng, et al. Application of RBF artificial neural network to fault diagnose in nuclear power plant[J]. Nuclear Power Engineering, 2006, 27(3):57-60, 96. 11 Seker S, Ayaz E, Türkcan E. Elman's recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery[J]. Engineering Applications of Artificial Intelligence, 2003, 16:647-656. 12 汤宝平, 习建民, 李锋. 基于Elman神经网络的旋转机械故障诊断[J]. 计算机集成制造系统, 2010, 10:2148-2152. TANG Baoping, XI Jianmin, LI Feng. Fault diagnosis for rotating machinery based on Elman neural network[J]. Computer Integrated Manufacturing Systems, 2010, 10:2148-2152. 13 Zhang X G. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1):33-41. 14 袁胜发, 褚福磊. 支持向量机及其在机械故障诊断中的应用[J]. 振动与冲击, 2007, 11:29-35, 58, 181. YUAN Shengfa, CHU Fulei. Support vector machines and its applications in machine fault diagnosis[J]. Journal of Vibration and Shock, 2007, 11:29-35, 58, 181. 15 宋梅村, 蔡琦. 基于支持向量回归的设备故障趋势预测[J]. 原子能科学技术, 2011, 45(8):972-976. SONG Meicun, CAI Qi. Fault trend prediction of device based on support vector regression[J]. Atomic Energy Science and Technology, 2011, 45(8):972-976. 16 黄彦平, 曹念, 文彦, 等. CATHARE程序的主要特征及应用[J]. 核动力工程, 2003, 24(6):540-544. HUANG Yanping, CAO Nian, WEN Yan, et al. Main features of CATHARE code and its application[J]. Nuclear Power Engineering, 2003, 24(6):540-544. 17 陈明. MATLAB神经网络原理与实例精解[M]. 北京:清华大学出版社, 2013. CHEN Ming. MATLAB neural network theory and examples[M]. Beijing:Tsinghua University Press, 2013. 18 李坤, 刘鹏, 吕雅洁, 等. 基于Spark的LIBSVM参数优选并行化算法[J]. 南京大学学报(自然科学), 2016, 52(2):343-352. LI Kun, LIU Peng, LYU Yajie, et al. The parallel algorithms for LIBSVM parameter optimization based on Spark[J]. Journal of Nanjing University (Natural Sciences), 2016, 52(2):343-352. 19 王小川. MATLAB神经网络43个案例分析[M]. 北京:北京航空航天大学出版社, 2013. WANG Xiaochuan. MATLAB neural network analysis of 43 cases[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2013. |