1 Forsberg C W, Peterson P F, Pickard P S. Molten-salt-cooled advanced high-temperature react or for production of hydrogen and electricity[J]. Nuclear Technology, 2003, 144(3): 289-302. DOI: 10.13182/nt03-1.2 彭超, 朱兴望, 张国庆, 等. 采用SCALE计算氟盐冷却高温堆产氚量的一些问题[J]. 核技术, 2015, 38(8): 080601. DOI: 10.11889/j.0253-3219.2015.hjs.38.080601.PENG Chao, ZHU Xingwang, ZHANG Guoqing, et al. Issues in the calculation of the tritium production of the fluoride-salt-cooled high-temperature reactors using SCALE[J]. Nuclear Techniques, 2015, 38(8): 080601. DOI: 10.11889/j.0253-3219.2015.hjs.38.080601.3 Mueller G E. Numerical simulation of packed beds with monosized spheres in cylindrical containers[J]. Powder Technology, 1997, 92(2): 179-183. DOI: 10.1016/S0032-5910(97)03207-5.4 Luchnikov V, Gavrilova M L, Medvedev N N, et al. The voronoi-delaunay approach for the free volume analysis of a packing of balls in a cylindrical container[J]. Future Generation Computer Systems, 2002, 18(5): 673-679. DOI: 10.1016/S0167-739X(02)00032-8.5 Jerier J F, Imbault D, Donze F V, et al. A geometric algorithm based on tetrahedral meshes to generate a dense polydisperse sphere packing[J]. Granular Matter, 2009, 11(1): 43-52. DOI: 10.1007/s10035-008-0116-0.6 Soontrapa K, Chen Y. Mono-sized sphere packing algorithm development using optimized Monte Carlo technique[J]. Advanced Powder Technology, 2013, 24(6): 955-961. DOI: 10.1016/j.apt.2013.01.007.7 Cundall P A, Strack O D. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. DOI: 10.1680/geot.1979.29.1.47.8 杨星团, 刘志勇, 胡文平, 等. HTR-10堆芯球流运动的唯象学DEM模拟[J]. 原子能科学技术, 2013, 47(12): 2231-2237. DOI: 10.7538/yzk.2013.47.12.2231.YANG Xingtuan, LIU Zhiyong, HU Wenping, et al. DEM simulation of pebble flow in HTR-10 core by phenomenological method[J]. Atomic Energy Science and Technology, 2013, 47(12): 2231-2237. DOI: 10.7538/yzk. 2013.47.12.2231.9 Li Y, Ji W. A collective dynamics-based method for initial pebble packing in pebble flow simulations[J]. Nuclear Engineering and Design, 2012, 250: 229-236. DOI: 10.1016/j.nucengdes.2012.05.020.10 Ougouag A M, Cogliati J J. Earthquakes and pebble bed reactors: time-dependent densification[J]. Mathematics & Computation and Supercomputing in Nuclear Applications Monterey, 2007. DOI: 10.1.1.204.9984.11 An X Z, Yang R Y, Zou R P, et al. Effect of vibration condition and inter-particle frictions on the packing of uniform spheres[J]. Powder Technology, 2008, 188(2): 102-109. DOI: 10.1016/j.powtec.2008.04.001.12 An X Z, Li C X. Experiments on densifying packing of equal spheres by two-dimensional vibration[J]. Particuology, 2013, 11(6): 689-694. DOI: 10.1016/j.partic. 2012.06.019.13 Alobaid F, Baraki N, Epple B. Investigation into improving the efficiency and accuracy of CFD/DEM simulations[J]. Particuology, 2014, 16: 41-53. DOI: 10.1016/j.partic.2013.11.004.14 Solutions D. EDEM v2.3 user guide[Z]. Edinburgh, UK: DEM Solutions Ltd, 2010.15 Toit C G D. Radial variation in porosity in annular packed beds[J]. Nuclear Engineering and Design, 2008, 238(11): 3073-3079. DOI: 10.1016/j.nucengdes.2007.12.018.16 Mueller G E. Radial porosity in packed beds of spheres[J]. Powder Technology, 2010, 203(3): 626-633. DOI: 10.1016/j.powtec.2010.07.007.17 Zou R, Yu A. The packing of spheres in a cylindrical container: the thickness effect[J]. Chemical Engineering Science, 1995, 50(9): 1504-1507. DOI: 10.1016/ j.nucengdes.2012.05.020. |