1 X-5 Monte Carlo Team. MCNP-a general Monte Carlo N-particle transport code[M]. Los Alamos Scientific Laboratory, 20032 Romano P K, Forget B. The OpenMC Monte Carlo particle transport code[J]. Annals of Nuclear Energy, 2013, 51(1):274-281. DOI:10.1016/j.anucene.2012.06.0403 Wang K, Li Z G, She D, et al. RMC-a Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 2015, 82:121-129. DOI:10.1016/j.anucene.2014.08.0484 邓力, 李刚, 张宝印, 等. JMCT蒙特卡罗中子-光子输运程序全堆芯pin-by-pin模型的模拟[J]. 原子能科学技术, 2014, 48(6):1061-1066 DENG Li, LI Gang, ZHANG Baoyin, et al. Simulation of full-core pin-by-pin model by JMCT Monte Carlo neutron-photon transport code[J]. Atomic Energy Science and Technology, 2014, 48(6):1061-10665 Veen D V, Hoogenboom J E. Efficiency improvement of local power estimation in the general purpose Monte Carlo code MCNP[J]. Progress in Nuclear Science and Technology, 2011, 2(1):866-8716 She D, Qiu Y. Improved methods of handling massive tallies in reactor Monte Carlo code RMC[R]. Proceeding 2013 International Conference on Mathematics & Computational Methods Applied to Nuclear Science and Engineering, Sun Valley, Idaho, May 5-9, 20137 Wu Y, Song J, Zheng H Q, et al. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC[J]. Annals of Nuclear Energy, 2015, 82(1):161-168. DOI:10.1016/j.anucene.2014.08.0588 Wu Y, FDS Team. CAD-based interface program for fusion neutron transport simulation[J]. Fusion Engineering and Design, 2009, 84(7-11):1987-1992. DOI:10.1016/j.fusengdes.2008.12.0419 Wu Y, FDS Team. Conceptual design activities of FDS series fusion power plants in China[J]. Fusion Engineering and Design, 2006, 81(23-24):2713-2718. DOI:10.1016/j.fusengdes.2006.07.06810 Wu Y, Jiang J, Wang M, et al. A fusion-driven subcritical system concept based on viable technologies[J]. Nuclear Fusion, 2011, 51(10):103036. DOI:10.1088/0029-5515/51/10/10303611 Qiu L, Wu Y, Xiao B. A low aspect ratio tokamak transmutation system[J]. Nuclear Fusion, 2000, 40(3Y):629-633. DOI:10.1088/0029-5515/40/3Y/32512 Wu Y, FDS Team. Design analysis of the China Dual-Functional Lithium Lead (DFLL) test blanket module in ITER[J]. Fusion Engineering and Design, 2007, 82(1):1893-1903. DOI:10.1016/j.fusengdes.2007.08. 01213 Wu Y, FDS Team. Conceptual design of the China fusion power plant FDS-Ⅱ[J]. Fusion Engineering and Design, 2008, 83(1):1683-1689. DOI:10.1016/j.fusengdes.2008. 06.04814 Wu Y, FDS Team. Fusion-based hydrogen production reactor and its material selection[J]. Journal of Nuclear Materials, 2009, 386-388:122-126. DOI:10.1016/j.jnucmat.2008.12.07515 Wu Y, FDS Team. Design status and development strategy of China liquid lithium-lead blankets and related material technology[J]. Journal of Nuclear Materials, 2007, 367-370:1410-1415. DOI:10.1016/j.jnucmat.2007.04. 03116 Li Y, Lu L, Ding A, et al. Benchmarking of MCAM4.0 with the ITER 3D model[J]. Fusion Engineering and Design, 2007, 82(15-24):2861-2866. DOI:10.1016/j.fusengdes.2007.02.02217 Song J, Sun G Y, Chen Z P, et al. Benchmarking of CAD-based SuperMC with ITER benchmark model[J]. Fusion Engineering and Design, 2014, 89(1):2499-2503. DOI:10.1016/j.fusengdes.2014.05.00318 Zhang B H, Song J, Sun G Y, et al. Criticality validation of SuperMC with ICSBEP[J]. Annals of Nuclear Energy, 2016, 87:494-499. DOI:10.1016/j.anucene.2015.10.00419 Andrei A. Modern C++ design:generic programming and design patterns applied[M]. Boston:Addison-Wesley, 200120 Hoogenboom J E, Martin W R. The Monte Carlo performance benchmark test-aims, specifications and first results[R]. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de Janeiro, Brazil, May 8-12, 201121 刘鸿飞, 张彬航, 张澍, 等. 基于Hoogenboom基准模型的SuperMC全堆芯计算能力校验[J]. 核技术, 2016, 39(4):040604. DOI:10.11889/j.0253-3219.2016.hjs.39. 040604 LIU Hongfei, ZHANG Binhang, ZHANG Shu, et al. Full reactor core calculation performance validation of SuperMC based on Hoogenboom benchmark[J]. Nuclear Techniques, 2016, 39(4):040604. DOI:10.11889/j. 0253-3219.2016.hjs.39.040604 |