1 US Department of Energy. A technology roadmap for generation IV nuclear energy systems[R]. USA:Nuclear Energy Research Advisory Committee and the Generation IV International Forum, 2002:GIF-002-00. 2 江绵恒, 徐洪杰, 戴志敏. 未来先进核裂变——TMSR核能系统[J]. 中国科学院院刊, 2012, 27(3):366-374. DOI:10.3969/j.issn.1000-3045.2012.03.016. JIANG Mianheng, XU Hongjie, DAI Zhimin. Advanced fission energy program-TMSR nuclear energy system[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(3):366-374. DOI:10.3969/j.issn.1000-3045.2012.03.016. 3 Hargraves R, Moir R. Liquid fluoride thorium reactors:an old idea in nuclear power gets reexamined[J]. American Scientist, 2010, 98(4):304-313. DOI:10.1511/2010.85. 304. 4 Bettis E S, Schroeder R W, Cristy G A, et al. The aircraft reactor experiment-design and construction[J]. Nuclear Science & Engineering, 1957, 2(6):804-825. DOI:10.13182/NSE57-A35495. 5 Ergen W K, Callihan A D, Mills C B, et al. The aircraft reactor experiment-physics[J]. Nuclear Science & Engineering, 1957, 2(6):826-840. DOI:10.13182/NSE57-A35496. 6 Bulmer J J, Gift E H, Holl R J, et al. Reactor design and feasibility study:fused salt fast breeder[R]. Tennessee:Oak Ridge School of Reactor Technology, 1956. 7 Smith J, Simmons W E. An assessment of a 2500 MWe molten chloride salt fast reactor[R]. Winfrith:United Kingdom Atomic Energy Authority, 1974. 8 Taube M. Fast reactors using molten chloride salts as fuel[R]. Switzerland:Swiss Federal Institute of Reactor Research, 1978. 9 Taube M, Heer W. Reactor with very low fission product inventory[R]. Switzerland:Swiss Federal Institute of Reactor Research, 1980. 10 Taube M, Ligou J. Molten chlorides fast breeder reactor problems and possibilities[R]. Switzerland:Swiss Federal Institute of Reactor Research, 1972. 11 Taube M, Ligou J. Molten plutonium chlorides fast breeder reactor cooled by molten uranium chloride[J]. Annals of Nuclear Science & Engineering, 1974, 1(4):277-281. DOI:10.1016/0302-2927(74)90045-2. 12 Scott I, Abram T, Negri O. Stable salt reactor design concept[C]. Proceedings of the International Thorium Energy Conference:Gateway to Thorium Energy, 2015. 13 Huke A, Ruprecht G, Weißbach D, et al. The dual fluid reactor-a novel concept for a fast nuclear reactor of high efficiency[J]. Annals of Nuclear Energy, 2015, 80:225-235. DOI:10.1016/j.anucene.2015.02.016. 14 Chloride reactor research founded by DOE[EB/OL]. 2015-7-31. http://energyfromthorium.com/2016/01/16/doe-terrapower/. 15 Operational & long-term shutdown reactors[EB/OL]. 2018-2-18. https://www.iaea.org/PRIS/WorldStatistics/OperationalReactorsByCountry.aspx. 16 OECD, NEA, IEA. Technology roadmap:nuclear energy[R]. 2015. 17 Ignatiev V, Feynberg O, Gnidoi I, et al. Progress in development of Li, Be, Na/F molten salt actinide recycler & transmuter concept[C]. Proceedings of ICAPP, 2007, 7:13-18. 18 闫凯. TZM合金高温抗氧化涂层的研究[D]. 南京:南京航空航天大学, 2010. DOI:10.7666/d.y1825359. YAN Kai. Study on high temperature oxidation-resistant coating on TZM alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010. DOI:10.7666/d. y1825359. 19 Alexander L G. Molten salt fast reactors[C]. Proceedings of Conference of Breeding, Economics, and Safety in Large Fast Power Reactors, 1963:553. 20 李光超, 邹杨, 余呈刚, 等. 基于熔盐快堆的模型优化与Th-U增殖性能研究[J]. 核技术, 2017, 40(2):020603. DOI:10.11889/j.0253-3219.2017.hjs.40.020603. LI Guangchao, ZOU Yang, YU Chenggang, et al. Model optimization and analysis of Th-U breeding based on MSFR[J]. Nuclear Techniques, 2017, 40(2):020603. DOI:10.11889/j.0253-3219.2017.hjs.40.020603. 21 Zou C Y, Cai X Z, Jiang D Z, et al. Optimization of temperature coefficient and breeding ratio for a graphite-moderated molten salt reactor[J]. Nuclear Engineering & Design, 2015, 281:114-120. DOI:10.1016/j.nucengdes.2014.11.022. 22 Yu C G, Li X X, Cai X Z, et al. Minor actinide incineration and Th-U breeding in a small FLiNaK molten salt fast reactor[J]. Annals of Nuclear Energy, 2017, 99:335-344. DOI:10.1016/j.anucene.2016.09.025. 23 Yu C G, Li X X, Cai X Z, et al. Analysis of minor actinides transmutation for a molten salt fast reactor[J]. Annals of Nuclear Energy, 2015, 85:597-604. DOI:10.1016/j.anucene.2015.06.014. 24 Mourogov A, Bokov P M. Potentialities of the fast spectrum molten salt reactor concept:REBUS-3700[J]. Energy conversion and management, 2006, 47(17):2761-2771. DOI:10.1016/j.enconman.2006.02.013. 25 Merle-Lucotte E, Heuer D, Brun C L, et al. Fast thorium molten salt reactors started with plutonium[C]. International Congress on Advances in Nuclear Power Plants, OAI, 2006. 26 Yokoo T, Inoue T. Mass balance of the Pu and minor actinides recycling metal fuel system[C]. 15th OECD/NEA Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, 1998. 27 Delpech S, Merle-Lucotte E, Heuer D, et al. Reactor physic and reprocessing scheme for innovative molten salt reactor system[J]. Journal of Fluorine Chemistry, 2009, 130(1):11-17. DOI:10.1016/j.jfluchem.2008.07.009. 28 Mitachi K, Suzuki T, Nakanishi Y, et al. A preliminary design study of a small molten salt reactor for effective use of thorium resource[C]. Proceedings 7th International Conference on Nuclear Engineering, Tokyo, Japan, 1999:7144. |