1 |
Dieckamp H M. Nuclear space power systems[R]. California: Atomics International, 1967.
|
2 |
EL-GENK M S. Deployment history and design considerations for space reactor power systems[J]. Acta Astronautica, 2009, 64(9‒10): 833‒849. DOI: 10.1016/j.actaastro.2008.12.016.
doi: 10.1016/j.actaastro.2008.12.016
|
3 |
刘永德. “十三五”发展规划之核工业[J]. 中国核电, 2017, 10(2): 157‒158.
|
|
LIU Yongde. 13th Five-year development plan in nuclear industry[J]. China Nuclear Power, 2017, 10(2): 157‒158.
|
4 |
Serp J, Allibert M, Beneš O, et al. The molten salt reactor (MSR) in generation IV: overview and perspectives[J]. Progress in Nuclear Energy, 2014, 77: 308‒319. DOI:10.1016/j.pnucene.2014.02.014.
doi: 10.1016/j.pnucene.2014.02.014
|
5 |
Sorensen B P K. Application of molten salt reactor technology to nuclear electric propulsion mission[R]. Huntsville, 2002.
|
6 |
Eades M. Development of molten salt reactor technology for space[R]. Columbus: The Ohio State University, 2012.
|
7 |
Kimura R, Yoshida T. Design study of molten-salt-type reactor for powering space probes and its automated start-up[J]. Journal of Nuclear Science Technology, 2013, 50(10): 998‒1010. DOI: 10.1080/00223131.2013.829284.
doi: 10.1080/00223131.2013.829284
|
8 |
Leppänen J. Serpent-a continuous-energy Monte Carlo reactor physics burnup calculation code[R]. Finland: VTT Technical Research Centre, 2015.
|
9 |
King J C, El-Genk M S. Temperature and burnup reactivities and operational lifetime for the submersion-subcritical, safe space (S4) reactor[J]. Nuclear Engineering and Design, 2007, 237(5): 552‒564. DOI: 10.1016/j.nucengdes.2006.07.008.
doi: 10.1016/j.nucengdes.2006.07.008
|
10 |
El-Genk M S, Tournier J-M P. “SAIRS”-scalable AMTEC integrated reactor space power system[J]. Progress in Nuclear Energy, 2004, 45(1): 25‒69.
|
11 |
Ma K, Liu J. Liquid metal cooling in thermal management of computer chips[J]. Frontiers of Energy and Power Engineering in China, 2007, 1: 384‒402. DOI:10.1007/s11708-007-0057-3.
doi: 10.1007/s11708-007-0057-3
|
12 |
洪兵. 锂热管冷却空间反应堆堆芯物理特性研究[D]. 合肥: 中国科学技术大学, 2018.
|
|
HONG Bing. Core physics study of lithium heat-pipe cooled space reactor[D]. Hefei: University of Science and Technology of China, 2018.
|
13 |
Bushman A, Carpenter D, Ellis T, et al. The Martian surface reactor: an advanced nuclear power station for manned extraterrestrial exploration[ED/OL]. .
|
14 |
Williams D, Toth L, Clarno K. Assessment of candidate molten salt coolants for the advanced high temperature reactor (AHTR)[R]. United States: Department of Energy, 2006.
|
15 |
苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016.
|
|
SU Zhutong, YANG Jicai, KE Guotu. Space nuclear power[M]. Shanghai: Shanghai Jiaotong University Press, 2016.
|
16 |
Collin B. Modeling and analysis of FCM UN TRISO fuel using the PARFUME code[R]. Idaho National Laboratory (INL), 2013.
|
17 |
李伟, 武小莉, 刘仕超, 等. UN 核芯 TRISO 包覆燃料颗粒性能分析[J]. 原子能科学技术, 2018, 52(2): 283‒289. doi: 10.7538/yzk.2017.youxian.0217.
doi: 10.7538/yzk.2017.youxian.0217
|
|
LI Wei, WU Xiaoli, LIU Shichao, et al. Performance analysis of TRISO coated fuel particle with UN kernel [J]. Atomic Energy Science and Technology, 2018, 52(2): 283‒289. doi: 10.7538/yzk.2017.youxian.0217.
doi: 10.7538/yzk.2017.youxian.0217
|
18 |
王德君, 何淼, 秦芝, 等. 碳化铀核燃料缺陷结构的研究现状 [J]. 核技术, 2017, 40(7): 070606. DOI: 10.11889/j.0253-3219.2017.hjs.40.070606.
doi: 10.11889/j.0253-3219.2017.hjs.40.070606
|
|
WANG Dejun, HE Miao, QIN Zhi, et al. Current status of studies on point defect structures of uranium carbide nuclear fuels[J]. Nuclear Techniques, 2017, 40(7): 070606. DOI: 10.11889/j.0253-3219.2017.hjs.40.070606.
doi: 10.11889/j.0253-3219.2017.hjs.40.070606
|
19 |
El-Genk M, Hatton S, Fox C, et al. ScoRe-concepts of liquid metal cooled space reactors for avoidance of single‐point failure[C]. AIP Conference Proceedings, 2005: 473‒484.
|
20 |
Poston D. The heatpipe-operated Mars exploration reactor (HOMER)[C]. AIP Conference Proceedings, 2001: 797‒804. DOI: 10.1063/1.1358010.
doi: 10.1063/1.1358010
|
21 |
Schriener T M, El-Genk M S. Effects of decreasing fuel enrichment on the design of the Pellet Bed Reactor (PeBR) for lunar outposts[J]. Progress in Nuclear Energy, 2018, 104: 288‒297. DOI: 10.1016/j.pnucene.2017.10.010.
doi: 10.1016/j.pnucene.2017.10.010
|
22 |
El-Genk M S, Schriener T M. Long operation life reactor for lunar surface power[J]. Nuclear Engineering and Design, 2011, 241(6): 2339‒2352. DOI: 10.1016/j.nucengdes.2011.02.024.
doi: 10.1016/j.nucengdes.2011.02.024
|
23 |
杨谢, 佘顶, 石磊. 棱柱式高温气冷空间核反应堆初步方案设计与中子物理分析[J]. 原子能科学技术, 2017, 51(12): 2288‒2293. DOI: 10.7538/yzk.2017.51.12.2288.
doi: 10.7538/yzk.2017.51.12.2288
|
|
YANG Xie, SHE Ding, SHI Lei. Preliminary design and neutronic analysis of prismatic high temperature gas-cooled space nuclear reactor[J]. Atomic Energy Science and Technology, 2017, 51(12): 2288‒2293. DOI: 10.7538/yzk.2017.51.12.2288.
doi: 10.7538/yzk.2017.51.12.2288
|
24 |
El-Genk M S, Tournier J-M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems[J]. Journal of Nuclear materials, 2005, 340(1): 93‒112. DOI:10.1016/j.jnucmat.2004.10.118.
doi: 10.1016/j.jnucmat.2004.10.118
|
25 |
Nascimento J A, Guimarães L, Ono S. Fuel, structural material and coolant for an advanced fast micro-reactor[J]. JBIS - Journal of the British Interplanetary Society, 2014, 67: 381‒389.
|
26 |
洪兵, 徐刚, 李桃生, 等. 锂热管结构材料对热管冷却反应堆中子物理特性影响[J]. 核科学与工程, 2018, 38(5): 757‒762. DOI: 10.3969/j.issn.0258-0918.2018.05.005.
doi: 10.3969/j.issn.0258-0918.2018.05.005
|
|
HONG Bing, XU Gang, LI Taosheng, et al. The effect of structure materials of lithium heat pipe on neutronics of the heat-pipe cooled reactor[J]. Nuclear Science and Engineering, 2018, 38(5): 757‒762. DOI: 10.3969/j.issn.0258-0918.2018.05.005.
doi: 10.3969/j.issn.0258-0918.2018.05.005
|
27 |
胡忠武, 李中奎, 张廷杰, 等. 钽及钽合金的新发展和应用 [J]. 稀有金属与硬质合金, 2003, 31(3): 34‒36. DOI:10.3969/j.issn.1004-0536.2003.03.010.
doi: 10.3969/j.issn.1004-0536.2003.03.010
|
|
HU Zhongwu, LI Zhongkui, ZHANG Tingjie, et al. New developments and applications of tantalum and tantalum alloys[J]. Rare Metals and Cemented Carbides, 2003, 31(3): 34‒36. DOI: 10.3969/j.issn.1004-0536.2003.03.010.
doi: 10.3969/j.issn.1004-0536.2003.03.010
|
28 |
Fink J, Sofu T, Ley H. International nuclear safety center database on thermophysical properties of reactor materials[J]. International Journal of Thermophysics, 1999, 20(1): 279‒287. doi: 10.1023/A:1021463121533.
doi: 10.1023/A:1021463121533
|
29 |
Tonoike K, Miyoshi Y, Okubo K. Reactivity effect measurement of neutron interaction between two slab cores containing 10% enriched uranyl nitrate solution without neutron isolator[J]. Journal of Nuclear Science and Technology, 2003, 40(4): 238‒245. DOI: 10.1080/18811248.2003.9715354.
doi: 10.1080/18811248.2003.9715354
|
30 |
De Holanda Mencarini L, King J C. Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor[J]. Nuclear Engineering and Design, 2018, 340: 122‒132. doi: 10.1016/j.nucengdes.2018.09.017.
doi: 10.1016/j.nucengdes.2018.09.017
|
31 |
姚成志, 胡古, 解家春, 等. 月球基地核电源系统方案研究[J]. 原子能科学技术, 2016, 50(3): 464‒470. DOI: 10.7538/yzk.2016.50.03.0464.
doi: 10.7538/yzk.2016.50.03.0464
|
|
YAO Chengzhi, HU Gu, XIE Jiachun, et al. Scheme research of nuclear reactor power system for lunar base [J]. Atomic Energy Science and Technology, 2016, 50(3): 464‒470. DOI: 10.7538/yzk.2016.50.03.0464.
doi: 10.7538/yzk.2016.50.03.0464
|