1 |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI: 10.1126/science. 1102896.
doi: 10.1126/science. 1102896
|
2 |
Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534. DOI: 10.1126/science. 1158877.
doi: 10.1126/science. 1158877
|
3 |
Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials[J]. Nature Nanotechnology, 2014, 9(10): 768-779. DOI: 10.1038/nnano.2014.207.
doi: 10.1038/nnano.2014.207
|
4 |
He Y L, Li J H, Li L F, et al. The synergy reduction and self-assembly of graphene oxide via gamma-ray irradiation in an ethanediamine aqueous solution[J]. Nuclear Science and Techniques, 2016, 27(3): 61. DOI: 10.1007/s41365-016-0068-8.
doi: 10.1007/s41365-016-0068-8
|
5 |
Liu X Y. Nanomechanics of graphene and design of graphene composites[M]. Singapore: Springer Singapore, 2019. DOI: 10.1007/978-981-13-8703-6.
doi: 10.1007/978-981-13-8703-6
|
6 |
Akinwande D, Tao L, Yu Q K, et al. Large-area graphene electrodes: using CVD to facilitate applications in commercial touchscreens, flexible nanoelectronics, and neural interfaces[J]. IEEE Nanotechnology Magazine, 2015, 9(3): 6-14. DOI: 10.1109/MNANO.2015.2441105.
doi: 10.1109/MNANO.2015.2441105
|
7 |
崔奋为, 胡旭东, 朱海龙, 等. 锗基石墨烯能带加工: 锰合金化插层[J]. 核技术, 2019, 42(8): 080501. DOI:10.11889/j.0253-3219.2019.hjs.42.080501.
doi: 10.11889/j.0253-3219.2019.hjs.42.080501
|
|
CUI Fenwei, HU Xudong, ZHU Hailong, et al. Band engineering of graphene: manganese intercalation by alloying with germanium substrate[J]. Nuclear Techniques, 2019, 42(8): 080501. DOI: 10.11889/j.0253-3219.2019.hjs.42.080501.
doi: 10.11889/j.0253-3219.2019.hjs.42.080501
|
8 |
Liu C C, Jiang H, Yao Y G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin[J]. Physical Review B, 2011, 84(19): 195430. DOI: 10.1103/PhysRevB.84. 195430.
doi: 10.1103/PhysRevB.84. 195430
|
9 |
Liao M H, Zang Y Y, Guan Z Y, et al. Superconductivity in few-layer stanene[J]. Nature Physics, 2018, 14(4): 344-348. DOI: 10.1038/s41567-017-0031-6.
doi: 10.1038/s41567-017-0031-6
|
10 |
Khazaei M, Ranjbar A, Arai M, et al. Electronic properties and applications of MXenes: a theoretical review[J]. Journal of Materials Chemistry C, 2017, 5(10): 2488-2503. DOI: 10.1039/C7TC00140A.
doi: 10.1039/C7TC00140A
|
11 |
Zhang G F, Li Y, Wu C J. Honeycomb lattice with multiorbital structure: Topological and quantum anomalous Hall insulators with large gaps[J]. Physical Review B, 2014, 90(7): 075114. DOI: 10.1103/PhysRevB. 90.075114.
doi: 10.1103/PhysRevB. 90.075114
|
12 |
Zhu F F, Chen W J, Xu Y, et al. Epitaxial growth of two-dimensional stanene[J]. Nature Materials, 2015, 14(10): 1020-1025. DOI: 10.1038/nmat4384.
doi: 10.1038/nmat4384
|
13 |
Guo Y, Pan F, Ye M, et al. Interfacial properties of stanene-metal contacts[J]. 2D Materials, 2016, 3(3): 035020. DOI: 10.1088/2053-1583/3/3/035020.
doi: 10.1088/2053-1583/3/3/035020
|
14 |
Yuhara J, Fujii Y, Nishino K, et al. Large area planar stanene epitaxially grown on Ag(111)[J]. 2D Materials, 2018, 5(2): 025002. DOI: 10.1088/2053-1583/aa9ea0.
doi: 10.1088/2053-1583/aa9ea0
|
15 |
Gou J, Kong L J, Li H, et al. Strain-induced band engineering in monolayer stanene on Sb(111)[J]. Physical Review Materials, 2017, 1(5): 054004. DOI: 10.1103/physrevmaterials.1.054004.
doi: 10.1103/physrevmaterials.1.054004
|
16 |
Xu C Z, Chan Y, Chen P, et al. Gapped electronic structure of epitaxial stanene on InSb(111)[J]. Physical Review B, 2018, 97(3): 035122. DOI: 10.1103/PhysRevB.97.035122.
doi: 10.1103/PhysRevB.97.035122
|
17 |
Liao M H, Zang Y Y, Guan Z Y, et al. Superconductivity in few-layer stanene[J]. Nature Physics, 2018, 14(4): 344-348. DOI: 10.1038/s41567-017-0031-6.
doi: 10.1038/s41567-017-0031-6
|
18 |
Zang Y Y, Jiang T, Gong Y, et al. Realizing an epitaxial decorated stanene with an insulating bandgap[J]. Advanced Functional Materials, 2018, 28(35): 1802723. DOI: 10.1002/adfm.201802723.
doi: 10.1002/adfm.201802723
|
19 |
Song Y H, Wang Z W, Jia Z Y, et al. High-buckled R3 stanene with topologically nontrivial energy gap[M]. arXiv e-prints, 2017.
|
20 |
Deng J L, Xia B Y, Ma X C, et al. Epitaxial growth of ultraflat stanene with topological band inversion[J]. Nature Materials, 2018, 17(12): 1081-1086. DOI: 10.1038/s41563-018-0203-5.
doi: 10.1038/s41563-018-0203-5
|
21 |
Maniraj M, Stadtmüller B, Jungkenn D, et al. A case study for the formation of stanene on a metal surface[J]. Communications in Physics, 2019, 2(1): 12. DOI: 10. 1038/s42005-019-0111-2.
doi: 10. 1038/s42005-019-0111-2
|
22 |
Liu Y N, Gao N, Zhuang J C, et al. Realization of strained stanene by interface engineering[J]. Journal of Physical Chemistry Letters, 2019, 10(7): 1558-1565. DOI: 10. 1021/acs.jpclett.9b00348.
doi: 10. 1021/acs.jpclett.9b00348
|
23 |
奎热西, 吴自玉, 钱海杰, 等. 北京同步辐射光电子能谱实验站近期实验概况[J]. 核技术, 2003, 26(2): 89-94.
|
|
KUI Rexi, WU Ziyu, QIAN Haijie, et al. Experiments recently carried out on the photoemission station at Beijing Synchrotron Radiation Facility[J]. Nuclear Techniques, 2003, 26(2): 89-94.
|
24 |
Corso M, Fernández L, Schiller F, et al. Au111-based nanotemplates by gd alloying[J]. ACS Nano, 2010, 4(3): 1603-1611. DOI: 10.1021/nn901345s.
doi: 10.1021/nn901345s
|
25 |
Liu G, St Clair T P, Goodman D W. An XPS study of the interaction of ultrathin Cu films with Pd(111)[J]. The Journal of Physical Chemistry B, 1999, 103(40): 8578-8582. DOI: 10.1021/jp991843j.
doi: 10.1021/jp991843j
|
26 |
Beutler A, Strisland F, Sandell A, et al. Adsorption properties of a mixed surface studied by high resolution core level photoemission: CO/0.5 ML Pd/Rh(111)[J]. Surface Science, 1998, 411(1): 111-122. DOI: 10.1016/S0039-6028(98)00339-2.
doi: 10.1016/S0039-6028(98)00339-2
|
27 |
Pacilé D, Ast C R, Papagno M, et al. Electronic structure of an ordered Pb/Ag(111) surface alloy: theory and experiment[J]. Physical Review B, 2006, 73(24): 245429. DOI: 10.1103/PhysRevB.73.245429.
doi: 10.1103/PhysRevB.73.245429
|
28 |
Yaji K, Ohtsubo Y, Hatta S, et al. Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface[J]. Nature Communications, 2010, 1: 17. DOI: 10.1038/ncomms1016.
doi: 10.1038/ncomms1016
|
29 |
Osiecki J R, Uhrberg R I G. Alloying of Sn in the surface layer of Ag(111)[J]. Physical Review B, 2013, 87(7): 075441. DOI: 10.1103/physrevb.87.075441.
doi: 10.1103/physrevb.87.075441
|
30 |
Chen W C, Chang T, Tsai S, et al. Significantly enhanced giant Rashba splitting in a thin film of binary alloy[J]. New Journal of Physics, 2015, 17(8): 083015. DOI: 10.1088/1367-2630/17/8/083015.
doi: 10.1088/1367-2630/17/8/083015
|
31 |
Liang X H, Deng J H, Fan L, et al. Nonalloying surface reconstructions of ultrathin Sn films on Cu(111) investigated with LEED, XPS, and photoelectron extended fine structure analysis[J]. Physical Review B, 2011, 84(7): 075406. DOI: 10.1103/PhysRevB.84.075406.
doi: 10.1103/PhysRevB.84.075406
|
32 |
Choi W H, Koh H, Rotenberg E, et al. Electronic structure of dense Pb overlayers on Si(111) investigated using angle-resolved photoemission[J]. Physical Review B, 2007, 75(7): 075329. DOI: 10.1103/PhysRevB. 75.075329
doi: 10.1103/PhysRevB. 75.075329
|
33 |
Maniraj M, Jungkenn D, Shi W, et al. Structure and electronic properties of the (√3×√3)R30°SnAu2/Au(111) surface alloy[J]. Physical Review B, 2018, 98(20): 205419. DOI: 10.1103/physrevb.98.205419.
doi: 10.1103/physrevb.98.205419
|
34 |
Kuhn M, Sham T K. Charge redistribution and electronic behavior in a series of Au-Cu alloys[J]. Physical Review B, 1994, 49(3): 1647-1661. DOI: 10.1103/PhysRevB. 49.1647.
doi: 10.1103/PhysRevB. 49.1647
|
35 |
Sadhukhan P, Barman S, Roy T, et al. Electronic structure of Au-Sn compounds grown on Au(111)[J]. Physical Review B, 2019, 100(23): 235404. DOI: 10.1103/physrevb.100.235404.
doi: 10.1103/physrevb.100.235404
|
36 |
Overbury S H, Ku Y S. Formation of stable, two-dimensional alloy-surface phases: Sn on Cu(111), Ni(111), and Pt(111)[J]. Physical Review B, 1992, 46(12): 7868-7872. DOI: 10.1103/physrevb.46.7868.
doi: 10.1103/physrevb.46.7868
|
37 |
Koel B E, Sellidj A, Paffett M T. Ultrathin films of Pd on Au(111): Evidence for surface alloy formation[J]. Physical Review B, 1992, 46(12): 7846-7856. DOI: 10.1103/physrevb.46.7846.
doi: 10.1103/physrevb.46.7846
|
38 |
Biswas C, Dhaka R S, Shukla A K, et al. Growth and electronic structure of Mn on Al(111)[J]. Surface Science, 2007, 601(3): 609-614. DOI: 10.1016/j.susc.2006.10.027.
doi: 10.1016/j.susc.2006.10.027
|
39 |
Dhaka R S, Shukla A K, Horn K, et al. Photoemission study of Al adlayers on Mn[J]. Physical Review B, 2011, 84(24): 245404. DOI: 10.1103/physrevb.84.245404.
doi: 10.1103/physrevb.84.245404
|
40 |
Wang W, Uhrberg R I G. Investigation of the atomic and electronic structures of highly ordered two-dimensional germanium on Au(111)[J]. Physical Review Materials, 2017, 1(7): 074002. DOI:10.1103/physrevmaterials. 1.074002.
doi: 10.1103/physrevmaterials. 1.074002
|
41 |
Ciulik J, Notis M R. The Au-Sn phase diagram[J]. Journal of Alloys and Compounds, 1993, 191(1): 71-78. DOI: 10.1016/0925-8388(93)90273-p.
doi: 10.1016/0925-8388(93)90273-p
|
42 |
Ghosh C. Interdiffusion study in binary gold-tin system[J]. Intermetallics, 2010, 18(11): 2178-2182. DOI: 10.1016/j.intermet.2010.07.013.
doi: 10.1016/j.intermet.2010.07.013
|
43 |
Yamada T, Miura K, Kajihara M, et al. Kinetics of reactive diffusion between Au and Sn during annealing at solid-state temperatures[J]. Materials Science and Engineering: A, 2005, 390(1-2): 118-126. DOI: 10.1016/j.msea.2004.08.053.
doi: 10.1016/j.msea.2004.08.053
|
44 |
Dyson B F. Diffusion of gold and silver in tin single crystals[J]. Journal of Applied Physics, 1966, 37(6): 2375-2377. DOI: 10.1063/1.1708821.
doi: 10.1063/1.1708821
|
45 |
Sadhukhan P, Singh V K, Rai A, et al. Surface alloying in Sn/Au(111) at elevated temperature[J]. AIP Conference Proceedings, 2018, 1942(1): 080073. DOI: 10.1063/1. 5028907.
doi: 10.1063/1. 5028907
|
46 |
Friedman R M, Hudis J, Perlman M L, et al. Electronic behavior in alloys: Au-Sn[J]. Physical Review B, 1973, 8(6): 2433-2440. DOI: 10.1103/PhysRevB.8.2433.
doi: 10.1103/PhysRevB.8.2433
|
47 |
Chakraborty S, Menon K S R. Growth and structural evolution of Sn on Ag(001): epitaxial monolayer to thick alloy film[J]. Journal of Vacuum Science and Technology, 2016, 34(4): 041513. DOI: 10.1116/1.4953543.
doi: 10.1116/1.4953543
|