1 | 王哲, 李海峰 . 内蒙高庙子膨润土对放射性核素锶和铯的吸附性能研究[J]. 山东化工, 2015, 44(16): 206-209. DOI: 10.3969/j.issn.1008-021X.2015.16.078 . | 1 | WANG Zhe , LI Haifeng . Study on adsorption performance of GMZ bentonite from Neimeng province for radioactive strontium and caesium[J]. Shandong Chemical Industry, 2015, 44(16): 206-209. DOI: 10.3969/j.issn.1008-021X.2015.16.078 . | 2 | 李稳, 陈功新, 孙占学, 等 . 某铀尾矿中U、Th在电场作用下释放及迁移规律[J]. 有色金属(冶炼部分), 2019, 15(02): 65-70. DOI: 10.3969/j.issn.1007-7545.2019.02.015 . | 2 | LI Wen , CHEN Gongxin , SUN Zhanxue , et al . Release and migration of U and Th in uranium tailings under electric field[J]. Nonferrous Metals (Extractive Metallurgy), 2019, 15 (02): 65-70. DOI: 10.3969/j.issn.1007-7545.2019.02.015 . | 3 | Kanney J F . Numerical simulation and sensitivity analysis of radionuclide transport in a fractured dolomite formation[J]. Developments in Water Science, 2004, 55(04): 1027-1039. DOI: 10.1016/S0167-5648(04)80122-9 . | 4 | Lim D H , Uchida M , Hatanaka K . Modeling of radionuclide migration through fractured rock in a HLW repository with multiple canisters[J]. Mrs Online Proceedings Library Archive, 2008, 1107: 567-575. DOI: 10.1557/PROC-1107-567 . | 5 | Maseliene Vaidote , Petro Rimantas . Modelling of coupled groundwater flow and radionuclide transport in crystalline basement using FEFLOW 5.0[J]. Journal of Environmental Engineering & Landscape Management, 2006, 14(2): 101-112. DOI: 10.3846/16486897.2006. 9636886 . | 6 | 邓晓颖, 庹先国 . Pu在板岩与粘土中的动态吸附模拟实验研究[J]. 科技视界, 2014, 40(23): 56-57. DOI: 10.3969/j.issn.2095-2457.2014.23.040 . | 6 | DENG Xiaoying , Xianguo TUO . Experimental study on dynamic adsorption of Pu in slate and clay[J]. Science & Technology Vision, 2014, 40(23): 56-57. DOI: 10.3969/j.issn.2095-2457.2014.23.040 . | 7 | 岳萍, 庹先国, 冷阳春, 等 . 钙基膨润土对239Pu核素迁移的阻滞性能研究[J]. 环境科学与技术, 2014, 37(08): 17-20. DOI: 10.3969/j.issn.1003-6504.2014.08.004 . | 7 | YUE Ping , Xianguo TUO , LENG Yangchun , et al . Retardation capability of Ca-bentonite on migration of 239Pu[J]. Environmental Science & Technology, 2014, 37(08): 17-20. DOI: 10.3969/j.issn.1003-6504.2014.08.004 . | 8 | Volkova E , Iooss B , Van Dorpe F . Global sensitivity analysis for a numerical model of radionuclide migration from the RRC Kurchatov Institute radwaste disposal site[J]. Stochastic Environmental Research & Risk Assessment, 2008, 22(1): 17-31. DOI: 10.1007/s00477-006-0093-y . | 9 | Chen J J , Zhang J L , Wang H Q . Numerical modeling on radionuclide migration adsorbed bysuspended matter in estuary[J]. Marine Environmental Science, 2003, 22(2): 28-32. DOI: 10.1007/s11769-003-0089-1 . | 10 | Merk R . Numerical modeling of the radionuclide water pathway with HYDRUS and comparison with the IAEA model of SR 44[J]. Journal of Environmental Radioactivity, 2012, 105(2): 60-69. DOI: 10.1016/j.jenvrad.2011.10.014 . | 11 | 王榕树 . 放射性核素在地质介质中的迁移研究[J]. 核化学与放射化学, 1994, 16(2): 117-118. | 11 | WANG Rongshu . The study on radionuclide migration in geologic media[J]. Journal of Nuclear and Radiochemistry, 1994, 16(2): 117-118. | 12 | 彭志娟, 李寻, 陈经明, 等 . 处置单元核素135Cs迁移数值模拟研究[J]. 地下水, 2018, 40(06): 113-116. DOI: 10.3969/j.issn.1004-1184.2018.06.040 . | 12 | PENG Zhijuan , LI Xun , CHEN Jingming , et al . Numerical simulation study on migration of nuclide 135Cs in disposal unit[J]. Ground Water, 2018, 40(06): 113-116. DOI: 10.3969/j.issn.1004-1184.2018.06.040 . | 13 | Pauline M , Daniele L P , Bassam G . Uranium and noble gas isotopes to decipher naturally-occcuring radionuclide release into aquifers[C]. EGU General Assembly 2017,Vienna, 2017. | 14 | Sandhu D , Singh A , Duranceau S J . Fate and transport of radioactive gypsum stack water entering the Floridan aquifer due to a sinkhole collapse[J]. Scientific Reports, 2018, 8(1): 710. DOI: 10.1016/j.scitotenv.2018.07.181 . | 15 | Zhao P P , Xu Z , Sun C X . Experimental study of conservative solute transport in heterogeneous aquifers[J]. Environmental Earth Sciences, 2017, 76(12): 421. DOI: 10.1007/s12665-017-6734-2 . |
|