1 |
Ye Q H . Development and prospect of nuclear power and nuclear energy industry in China[J]. Southern Energy Construction, 2015, 2(4): 18-21.
|
2 |
Ouyang Y . International nuclear power application and its prospect forecast and our country nuclear electricity development[J]. Journal of North China Electric Power University, 2007, 34(5): 1-5.
|
3 |
Serp J , Allibert M , Benes O , et al . The molten salt reactor (MSR) in generation IV: overview and perspectives[J]. Progress in Nuclear Energy, 2014, 77: 308-319. DOI: 10.1016/j.pnucene.2014.02.014.
doi: 10.1016/j.pnucene.2014.02.014
|
4 |
Ingersoll D T. Status of preconceptual design of the advanced high-temperature reactor (AHTR)[R]. Office of Scientific & Technical Information Technical Reports, 2004. DOI: 10.2172/861752.
doi: 10.2172/861752
|
5 |
Ishiyama S , Burchll T D , Strizak J P , et al . The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite[J]. Journal of Nuclear Materials, 1996, 230(1): 1-7. DOI: 10.1016/0022-3115(96)00005-0.
doi: 10.1016/0022-3115(96)00005-0
|
6 |
Mcenaney B . Relating measurements of mechanical properties of nuclear graphites to reactor conditions - a review of the effects of temperature and pressure[J]. Special Publication Royal Society of Chemistry, 2007, 22: 359-376. DOI: 10.1117/12.938367.
doi: 10.1117/12.938367
|
7 |
Woolley R L . On the theory of irradiation damage in graphite at power reactor temperatures[J]. British Journal of Applied Physics, 1963, 14(11): 778-783. DOI: 10.1088/0508-3443/14/11/311.
doi: 10.1088/0508-3443/14/11/311
|
8 |
史力, 王洪涛, 王海涛, 等 . 核级石墨材料断裂韧性实验研究[J]. 核动力工程, 2011, 32(s1): 185-188.
|
|
SHI Li , WANG Hongtao , WANG Haitao , et al . Experimental study on fracture toughness of nuclear graphite[J]. Nuclear Power Engineering, 2011, 32(s1): 185-188.
|
9 |
Hindley M P , Blaine D C , Groenwold A A , et al . Failure prediction of full-size reactor components from tensile specimen data on NBG-18 nuclear graphite[J]. Nuclear Engineering and Design, 2015, 284: 1-9. DOI: 10.1016/j.nucengdes.2014.12.011.
doi: 10.1016/j.nucengdes.2014.12.011
|
10 |
王琳霖, 曹国强, 王亚杰, 等 . 用于核级石墨断裂分析的相位测量技术研究[J]. 激光与光电子学进展, 2018, 55(3): 315-321. DOI: 10.3788/lop55.031203.
doi: 10.3788/lop55.031203.
|
|
WANG Linlin , CAO Guoqiang , WANG Yajie , et al . Research of phase measurment techniques for fracture analysis of nuclear graphite[J]. Laser & Optoelectronices Progress, 2018, 55(3): 315-321. DOI: 10.3788/lop55.031203.
doi: 10.3788/lop55.031203.
|
11 |
Kelly B T . Graphite-the most fascinating nuclear material (Charles E. Pettinos award lecture)[J]. Carbon, 1982, 20(2): 125-125. DOI: 10.1016/0008-6223(82)90421-3.
doi: 10.1016/0008-6223(82)90421-3
|
12 |
Jenkins G M . Fracture in reactor graphite[J]. Journal of Nuclear Materials, 1962, 5(3): 280-286. DOI:10.1016/0022-3115(62)90068-5.
doi: 10.1016/0022-3115(62)90068-5
|
13 |
Yoda S , Eto M , Oku T . Change in dynamic young's modulus of nuclear-grade isotropic graphite during tensile and compressive stressing[J]. Journal of Nuclear Materials, 1983, 119(2): 278-283. DOI: 10.1016/0022-3115(83)90204-0.
doi: 10.1016/0022-3115(83)90204-0
|
14 |
Marrow T J , Liu D , Barhli S M , et al . In situ measurement of the strains within a mechanically loaded polygranular graphite[J]. Carbon, 2016, 96: 285-302. DOI: 10.1016/j.carbon.2015.09.058.
doi: 10.1016/j.carbon.2015.09.058
|
15 |
Seldin E J . Stress-strain properties of polycrystalline graphites in tension and compression at room temperature[J]. Carbon, 1966, 4(2): 177-191. DOI: 10.1016/0008-6223(66)90079-0.
doi: 10.1016/0008-6223(66)90079-0
|
16 |
Rosenthal M W, Haubenreich P N , Briggs R B . The development status of molten-salt breeder reactors[R]. ORNL-4812, 1972.
|
17 |
张宝亮, 戚威, 夏汇浩, 等 . 核石墨的孔结构与熔盐浸渗特性研究[J]. 核技术, 2017, 40(12): 120605.DOI: 10.11889/j.0253-3219.2017.hjs.40.120605.ZHANG Baoliang ,
doi: 10.11889/j.0253-3219.2017.hjs.40.120605.
|
|
QI Wei , XIA Huihao , et al . Porosity properties and molten salt impregnation characteristics of nuclear graphites[J]. Nuclear Techniques, 2017, 40(12): 120605. DOI: 10.11889/j.0253-3219.2017.hjs.40.120605.
doi: 10.11889/j.0253-3219.2017.hjs.40.120605.
|
18 |
Tang H . Study on molten salt infiltration and mechanical properties of nuclear graphite based on the molten salt reactor[D]. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2018.
|
19 |
Zhang C , He Z T , Gao Y T , et al . The effect of molten FLiNaK salt infiltration on the strength of graphite[J]. Journal of Nuclear Materials, 2018, 512: 37-45. DOI: 10.1016/j.jnucmat.2018.09.051.
doi: 10.1016/j.jnucmat.2018.09.051
|
20 |
He Z T , Gao L L , Wang X , et al . Improvement of stacking order in graphite by molten fluoride salt infiltration[J]. Carbon, 2014, 72: 304-311. DOI: 10.1016/j.carbon.2014.02.01.
doi: 10.1016/j.carbon.2014.02.01
|
21 |
Yang Y G , Feng S L , Li M , et al . Enormously improved CH3NH3PbI3 film surface for environmentally stable planar perovskite solar cells with PCE exceeding 19.9%[J]. Nano Energy, 2018, 48: 10-19. DOI: 10.1016/j.nanoen.2018.03.046.
doi: 10.1016/j.nanoen.2018.03.046
|
22 |
Feng S L , Yang Y G , Li L , et al . High temperature in-situ synchrotron-based XRD study on the crystal structure evolution of C/C composite impregnated by FLiNaK molten salt[J]. Scientific Reports, 2017, 7(1): 10673. DOI: 10.1038/s41598-017-11033-2.
doi: 10.1038/s41598-017-11033-2
|