1 Esmaili H, Khatib-Rahbar M. Analysis of likelihood of lower head failure and ex-vessel fuel coolant interaction energetics for AP1000[J]. Nuclear Engineering and Design, 2005, 235(15):1583-1605. DOI:10.1016/j. nucengdes.2005.02.003. 2 温爽, 李铁萍, 李聪新, 等. 熔融物堆内滞留条件下压力容器变形[J]. 核技术, 2016, 39(10):100603. DOI:10.11889/j.0253-3219.2016.hjs.39.100603. WEN Shuang, LI Tieping, LI Congxin, et al. Pressure vessel deformation under in-vessel retention condition[J]. Nuclear Techniques, 2016, 39(10):100603. DOI:10.11889/j.0253-3219.2016.hjs.39.100603. 3 金頔, 李飞, 刘晓晶, 等. 大功率先进压水堆压力容器外部冷却能力研究[J]. 原子能科学技术, 2014, 48(2):277-284. DOI:10.7538/yzk.2014.48.02.0277. JIN Di, LI Fei, LIU Xiaojing, et al. Study on external reactor vessel cooling capacity for advanced large size PWR[J]. Atomic Energy Science and Technology, 2014, 48(2):277-284. DOI:10.7538/yzk.2014.48.02.0277. 4 鲍晗, 金越, 刘晓晶, 等. 大功率先进压水堆 IVR 有效性评价中熔池换热研究[J]. 原子能科学技术, 2014, 48(2):234-240. DOI:10.7538/yzk.2014.48.02.0234. BAO Han, JIN Yue, LIU Xiaojing, et al. Study of nature convection heat transfer in molten pool for advanced large size PWR[J]. Atomic Energy Science and Technology, 2014, 48(2):234-240. DOI:10.7538/yzk.2014.48.02. 0234. 5 徐红, 周志伟. 先进压水堆熔融物堆内滞留参数不确定分析研究[J]. 原子能科学技术, 2012, 46(1):37-42. DOI:10.7538/yzk.2012.46.01.0037. XU Hong, ZHOU Zhiwei. Research on uncertainty analysis of in-vessel retention parameters in advanced PWR[J]. Atomic Energy Science and Technology, 2012, 46(1):37-42. DOI:10.7538/yzk.2012.46.01.0037. 6 Asmolov V, Strizhov V. Overview of the progress in the OECD MASCA project[C]. Proceedings of CSARP Meeting, Washington D C, 2004. 7 曹克美, 许以全, 史国宝, 等. 三层熔池结构情况下反应堆压力容器外水冷有效性分析[J]. 核动力工程, 2013, 34(4):20-23. DOI:10.3969/j.issn.0258-0926.2013.04.005. CAO Kemei, XU Yiquan, SHI Guobao, et al. ERVC effectiveness analysis for three-layer configuration molten pool[J]. Nuclear Power Engineering, 2013, 34(4):20-23. DOI:10.3969/j.issn.0258-0926.2013.04.005. 8 曹臻, 王佳赟, 郭宁, 等. 三层熔池结构 IVR 分析程序开发及验证[J]. 原子能科学技术, 2018, 52(5):912-919. DOI:10.7538/yzk.2017.youxian.0756. CAO Zhen, WANG Jiayun, GUO Ning, et al. IVR simulation code development and validation based on three-layer configuration[J]. Atomic Energy Science and Technology, 2018, 52(5):912-919. DOI:10.7538/yzk. 2017.youxian.0756. 9 Theofanous T G, Liu C, Additon S. In-vessel cool-ability and retention of a core melt[R]. DOE/ID-10460, 1996. 10 向清安, 关仲华, 邓纯锐, 等. AP1000 IVR 三层熔池结构评价分析[J]. 核动力工程, 2013, 34(6):83-87. DOI:10.3969/j.issn.0258-0926.2013.06.020. XIANG Qingan, GUAN Zhonghua, DENG Chunrui, et al. An assessment methodology of thee-layers melt configuration during IVR for AP1000[J]. Nuclear Power Engineering, 2013, 34(6):83-87. DOI:10.3969/j.issn. 0258-0926.2013.06.020. 11 Oh S J, Kim H T. Effectiveness of external reactor vessel cooling (ERVC) strategy for APR1400 and issues of phenomenological uncertainties[C]. Workshop Proceedings on Evaluation of Uncertainties in Relation to Severe Accidents and Level2, Aix-en-Provence, France, 2005. 12 Jung J, An S M, Ha K S, et al. Evaluation of heat-flux distribution at the inner and outer reactor vessel walls under the in-vessel retention through external reactor vessel cooling condition[J]. Nuclear Engineering and Technology, 2015, 47(1):66-73. DOI:10.1016/j.net.2014. 11.005. 13 Rempe J, Knudson D. Margin for in-vessel retention in the APR1400-VESTA and SCDAP/RELAP5-3D analyses[R]. US:Idaho National Laboratory, 2004. 14 Rempe J L, Suh K Y, Cheung F B, et al. In-vessel retention strategy for high power reactors[R]. Final Report, Idaho National Engineering and Environmental Laboratory, Report No. INEEL/EXT-04-02561, 2003. 15 Park R J, Kang K H, Hong S W, et al. Detailed evaluation of melt pool configuration in the lower plenum of the APR1400 reactor vessel during severe accidents[J]. Annals of Nuclear Energy, 2015, 75:476-482. DOI:10.1016/j.anucene.2014.07.055. |