1 Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs:a perspective[J]. Journal of Nuclear Materials, 2014, 448(1-3):374-379. DOI:10.1016/j. jnucmat.2013.12.005. 2 Lee Y, Cho N Z. Three-dimensional single-channel thermal analysis of fully ceramic microencapsulated fuel via two-temperature homogenized model[J]. Annals of Nuclear Energy, 2014, 71:254-271. DOI:10.1016/j. anucene.2014.03.039. 3 Lee Y, Cho N Z. Steady and transient state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal conductivity model[J]. Annals of Nuclear Energy, 2015, 76:283-296. DOI:10.1016/j.anucene.2014.09.027. 4 Wu X L, Li W, Wang Y, et al. Preliminary safety analysis of the PWR with accident tolerant fuels during severe accident conditions[J]. Annals of Nuclear Energy, 2015, 80:1-13. DOI:10.1016/j.anucene.2015.02.040. 5 Lee H G, Kim D, Lee S J, et al. Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites[J]. Nuclear Engineering and Design, 2017, 311:9-15. DOI:10.1016/j. nucengdes.2016.11.005. 6 Kou H S, Lu K T, Yu C C. Effective thermal conductivity of composite material with spherical inclusions in orthorhombic structure[J]. Computer & Structures, 1994, 53(3):569-577. 7 Maxwell J C. A treatise on electricity and magnetism[M]. Cambridge:Cambridge University Press, 2010:111. 8 Carson J K, Lovatt S J, Tanner D J, et al. Thermal conductivity bounds for isotropic, porous materials[J]. International Journal of Heat and Mass Transfer, 2005, 48(11):2150-2158. DOI:10.1016/j.ijheatmasstransfer. 2004.12.032. 9 Gonzo E E. Estimating correlations for the effective thermal conductivity of granular materials[J]. Chemical Engineering Journal, 2002, 90(3):299-302. DOI:10.1016/S1385-8947(02)00121-3. 10 Stainsby R, Grief A, Worsley M, et al. Investigation of local heat transfer phenomena in a pebble bed HTGR core (NR001/RP/002R01)[R]. United Kingdom:Amec Foster Wheeler-Nuclear, 2009. 11 Terrani K A, Snead L L, Gehin J C. Microencapsulated fuel technology for commercial light water and advanced reactor application[J]. Journal of Nuclear Materials, 2012, 427(1-3):209-224. DOI:10.1016/j.jnucmat.2012.05.021. 12 Powers J J. Fully ceramic microencapsulated (FCM) replacement fuel for LWRs (TM-2013/173)[R]. USA:Oak Ridge National Laboratory, 2013. 13 Cheon J S, Lee B H, Koo Y H, et al. Evaluation of a pellet-clad mechanical interaction in mixed oxide fuels during power transients by using axisymmetric finite element modeling[J]. Nuclear Engineering and Design, 2004, 231(1):39-50. DOI:10.1016/j.nucengdes.2004. 02.009. 14 MacDonald P E, Thompson L B. MATPRO:a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior[R]. Version 09. USA:Idaho National Engineering Laboratory, 1976. |