1 Qiu L Z, Xie R C, Ding P, et al. Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA[J]. Composite Structures, 2003, 62(3-4):391-395. DOI:10.1016/j.compstruct.2003.09.010. 2 Liu M H, Wang Y H, Chen L T, et al. Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(Ⅱ) from aqueous solution[J]. ACS Applied Materials & Interfaces, 2015, 7(15):7961-7969. DOI:10.1021/am509184e. 3 Dong C X, Cairney J, Sun Q H, et al. Investigation of Mg(OH)2 nanoparticles as an antibacterial agent[J]. Journal of Nanoparticle Research, 2010, 12(6):2101-2109. DOI:10.1007/s11051-009-9769-9. 4 Al-Hazmi F, Umar A, Dar G N, et al. Microwave assisted rapid growth of Mg(OH)2 nanosheet networks for ethanol chemical sensor application[J]. Journal of Alloys and Compounds, 2012, 519:4-8. DOI:10.1016/jallcom.2011. 09.089. 5 Samodi A, Rashidi A, Marjani K, et al. Effects of surfactants, solvents and time on the morphology of MgO nanoparticles prepared by the wet chemical method[J]. Materials Letters, 2013, 109:269-274. DOI:10.1016/j.matlet.2013.07.085. 6 Makhluf S, Dror R, Nitzan Y, et al. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide[J]. Advanced Functional Materials, 2005, 15(10):1708-1715. DOI:10.1002/adfm.200500029. 7 Tian P, Han X Y, Ning G L, et al. Synthesis of porous hierarchical MgO and its superb adsorption properties[J]. ACS Applied Materials & Interfaces, 2013, 5(23):12411-12418. DOI:10.1021/am403352y. 8 Ganguly A, Trinh P, Ramanujachary K V, et al. Reverse micellar based synthesis of ultrafine MgO nanoparticles (8-10 nm):characterization and catalytic properties[J]. Journal of Colloid and Interface Science, 2011, 353(1):137-142. DOI:10.1016/j.jcis.2010.09.041. 9 Obradovic N, Mitric M, Nikolic M V, et al. Influence of MgO addition on the synthesis and electrical properties of sintered zinc-titanate ceramics[J]. Journal of Alloys and Compounds, 2009, 471(1-2):272-277. DOI:10.1016/j.jallcom.2008.03.090. 10 Pilarska A A, Klapiszewski Ł, Jesionowski T. Recent development in the synthesis, modification and application of Mg(OH)2 and MgO:a review[J]. Powder Technology, 2017, 319:373-407. DOI:10.1016/j.powtec. 2017.07.009. 11 Kumari L, Li W Z, Vannoy C H, et al. Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO[J]. Ceramics International, 2009, 35(8):3355-3364. DOI:10.1016/j.ceramint.2009.05.035. 12 Jin D L, Gu X Y, Yu X J, et al. Hydrothermal synthesis and characterization of hexagonal Mg(OH)2 nano-flake as a flame retardant[J]. Materials Chemistry and Physics, 2008, 112(3):962-965. DOI:10.1016/j.matchemphys. 2008.07.058. 13 景殿策, 王宝和, 张伟, 等. 纳米氢氧化镁粉体的制备及热分解动力学研究[J]. 中国粉体技术, 2006, 12(5):24-27. DOI:10.13732/j.issn.1008-5548.2006.05.008.JING Diance, WANG Baohe, ZHANG Wei, et al. Preparation and thermal decomposition kinetics of nano magnesium hydroxide powder[J]. China Powder Science and Technology, 2006, 12(5):24-27. DOI:10.13732/j.issn.1008-5548.2006.05.008. 14 Goodman J F. The decomposition of magnesium hydroxide in an electron microscope[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1958, 247(1250):346-352. DOI:10.1098/rspa.1958.0188. 15 Anderson P J, Horlock R F. Thermal decomposition of magnesium hydroxide[J]. Transactions of the Faraday Society, 1962, 58:1993-2004. DOI:10.1039/TF9625801993. 16 Yoshioka H, Amita K, Hashizume G. The nucleation-two dimensional interface growth equation for the thermal decomposition of Mg(OH)2[J]. Netsu Sokutei, 1984, 11(3):115-118. DOI:10.11311/jscta1974.11.115. 17 宁志强, 翟玉春, 孙立芹, 等. 氢氧化镁分解动力学的研究[J]. 分子科学学报, 2009, 25(1):27-30. DOI:10.13563/j.cnki.jmolsci.2009.01.003.NING Zhiqiang, ZHAI Yuchun, SUN Liqin, et al. Decomposition kinetics of magnesium hydroxide[J]. Journal of Molecular Science, 2009, 25(1):27-30. DOI:10.13563/j.cnki.jmolsci.2009.01.003. 18 李歌, 李增和, 马鸿文, 等. 热重分析法研究氢氧化镁纳米粉体的非等温分解动力学[J]. 化工学报, 2014, 65(2):576-582. DOI:10.3969/j.issn.0438-1157.2014.02. 030.LI Ge, LI Zenghe, MA Hongwen, et al. Thermal gravimetric analysis analysis of non-isothermal decomposition kinetics of magnesium hydroxide nanopowder[J]. CIESC Journal, 2014, 65(2):576-582. DOI:10.3969/j.issn.0438-1157.2014.02.030. 19 苏爱国, 郑裕芳, 吴奕初, 等. 纳米SnO2和SnO2/SiO2材料的正电子湮没研究[J]. 核技术, 1998, 20(3):138-142.SU Aiguo, ZHENG Yufang, WU Yichu, et al. Positron annihilation study on nano SnO2 and SnO2/SiO2 materials[J]. Nuclear Techniques, 1998, 20(3):138-142. 20 李喜贵, 魏淑桃, 张瑞英, 等. Sol-gel方法制备ZnO陶瓷材料的正电子寿命谱研究[J]. 核技术, 2000, 23(6):371-375.LI Xigui, WEI Shutao, ZHANG Ruiying, et al. Positron lifetime spectroscopy study on ZnO ceramic materials prepared by sol-gel method[J]. Nuclear Techniques, 2000, 23(6):371-375. 21 Yang W, Zhu Z J, Shi J J, et al. Characterizations of the thermal decomposition of nano-magnesium hydroxide by positron annihilation lifetime spectroscopy[J]. Powder Technology, 2017, 311:206-212. DOI:10.1016/j.powtec. 2017.01.059. 22 Nga N K, Hong P T T, Dai Lam T, et al. A facile synthesis of nanostructured magnesium oxide particles for enhanced adsorption performance in reactive blue 19 removal[J]. Journal of Colloid and Interface Science, 2013, 398:210-216. DOI:10.1016/j.jcis.2013.02.018. 23 Choudhary V R, Rane V H, Pandit M Y. Comparison of alkali metal promoted MgO catalysts for their surface acidity/basicity and catalytic activity/selectivity in the oxidative coupling of methane[J]. Journal of Chemical Technology and Biotechnology, 1997, 68(2):177-186. DOI:10.1002/(SICI)1097-4660(199702)68. 24 Ciupină V, Zamfirescu S, Prodan G. Evaluation of mean diameter values using Scherrer equation applied to electron diffraction images[M]. Nanotechnology-Toxicological Issues and Environmental Safety and Environmental Safety. Springer Netherlands, 2007:231-237. DOI:10.1007/978-1-4020-6076-2_15. 25 翟学良. 氢氧化镁热分解行为与机理研究[J]. 矿产综合利用, 2000, (3):11-14. DOI:10.3969/j.issn.1000-6532. 2000.03.004.ZHAI Xueliang. Thermal decomposition behavior and mechanism of magnesium hydroxide[J]. Multipurpose Utilization of Mineral Resources, 2000, (3):11-14. DOI:10.3969/j.issn.1000-6532.2000.03.004. 26 Puska M J, Nieminen R M. Defect spectroscopy with positrons:a general calculational method[J]. Journal of Physics F:Metal Physics, 1983, 13(2):333. DOI:10.1088/0305-4608/13/2/009. 27 Brandt W, Paulin R. Positronium diffusion in solids[J]. Physical Review Letters, 1968, 21(4):193. DOI:10.1103/PhysRevLett.21.193. 28 Brandt W, Berko S, Walker W W. Positronium decay in molecular substances[J]. Physical Review, 1960, 120(4):1289. DOI:10.1103/PhysRev.121.1864.4. 29 Tao S J. Positronium annihilation in molecular substances[J]. The Journal of Chemical Physics, 1972, 56(11):5499-5510. DOI:10.1063/1.1677067. 30 Ito K, Nakanishi H, Ujihira Y. Extension of the equation for the annihilation lifetime of ortho-positronium at a cavity larger than 1 nm in radius[J]. The Journal of Physical Chemistry B, 1999, 103(21):4555-4558. DOI:10.1021/jp9831841. 31 Schaefer H E, Würschum R, Birringer R, et al. Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy[J]. Physical Review B, 1988, 38(14):9545. DOI:10.1021/jp9831841. |