1 江绵恒, 徐洪杰, 戴志敏. 未来先进核裂变能——TMSR核能系统[J]. 中国科学院院刊, 2012, 7(3):366-374. DOI:10.3969/j.issn.1000-3045.2012.03.016. JIANG Mianheng, XU Hongjie, DAI Zhimin. Advanced fission energy program-TMSR nuclear energy system[J]. Bullet in Chinese Academy of Sciences, 2012, 7(3):366-374. DOI:10.3969/j.issn.1000-3045.2012.03.016.2 袁炜东. 国内外太阳能光热发电发展现状及前景[J]. 电力与能源, 2015, 36(4):487-490. DOI:10.11973/dlyny201504006. YUAN Weidong. Development status and prospect of solar thermal power generation at home and abroad[J]. Power and Energy, 2015, 36(4):487-490. DOI:10.11973/dlyny201504006.3 Mills D. Advances in solar thermal electricity technology[J]. Solar Energy, 2004, 76(1): 19−31. DOI:10.1016/S0038-092X(03)00102-6.4 Kearney D, Kelly B, Herrmann U, et al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field[J]. Energy, 2004, 29(5):861-870. DOI:10.1016/S0360-5442(03)00191-9.5 Ignatiev V V, Feynberg O S. Molten-salt reactors:new possibilities, problems, and solutions[J]. Atomic Energy, 2012, 112(3):157-165. DOI:10.1007/s10512-012-9537-2.6 Wilkinson W L. Environmental impact of electricity generation[J]. Transactions of the Royal Society of South Africa, 2001, 56(2):131-133. DOI:10.1080/0035919010 9520511.7 Liu M, Bell S. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies[J]. Renewable & Sustainable Energy Reviews, 2016, 53(09):1411-1432. DOI:10. 1016/j.rser.2015.09.026.8 金愿, 张鹏. 几种典型熔盐冷却剂的热物性研究[J]. 核技术, 2016, 39(5):050604. DOI:10.11889/j.0253-3219. 2016.hjs.39.050604. JIN Yuan, ZHANG Peng. Research on thermo-physical properties of several typical molten salt coolants[J]. Nuclear Techniques, 2016, 39(5):050604. DOI:10.11889/j.0253-3219.2016.hjs.39.050604.9 Bradshaw R W, Meeker D E. High-temperature stability of ternary nitrate molten salts for solar thermal energy systems[J]. Solar Energy Materials, 1990, (21):51-60. DOI:10.1016/0165-1633(90)90042-Y.10 程进辉. 传蓄热熔盐的热物性研究[D]. 上海:中国科学院上海应用物理研究所, 2014. CHENG Jinhui. Study on molten salt thermos-physical properties for heat transfer and storage[D]. Shanghai:Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2014.11 杜宝强, 王怀有, 李锦丽, 等. 氯离子对Solar salt熔盐热物性的影响及结构分析[J]. 应用化工, 2017, 46(6):1086-1088. DOI:10.16581/j.cnki.issn1671-3206. 20170505.036. DU Baoqiang, WANG Huaiyou, LI Jinli, et al. Effect of chloride ion on the thermal properties of Solar salt molten salt and its structure analysis[J]. Applied Chemical Industry, 2017, 46(6):1086-1088. DOI:10.16581/j.cnki. issn1671-3206.20170505.036.12 Zhang H, Zhao Y, Li J, et al. Preparation and thermal properties of high-purified molten nitrate salt materials with heat transfer and storage[J]. High Temperature Materials & Processes, 2015, 34(8):1-8. DOI:10.1515/htmp-2014-0147.13 倪海鸥, 孙泽, 黄龙, 等. 杂质SO42-对混合硝酸盐结构的影响分析[J]. 储能科学与技术, 2016, 5(2):210-214. DOI:10.3969/j.issn.2095-4239.2016.02.013. NI Haiou, SUN Ze, HUANG Long, et al. Analysis of the influence of impurity SO42- on the structure of mixed nitrate[J]. Energy Storage Science and Technology, 2016, 5(2):210-214. DOI:10.3969/j.issn.2095-4239.2016.02. 013.14 Bonk A, Martin C, Braun M, et al. Material investigations on the thermal stability of solar salt and potential filler materials for molten salt storage[C]. AIP Conference Proceedings, 2017, 1850:080008. DOI:10.1063/1. 4984429.15 Gimenez P, Fereres S. Effect of heating rates and composition on the thermal decomposition of nitrate based molten salts[J]. Energy Procedia, 2015, 69:654-662. DOI:10.1016/j.egypro.2015.03.075.16 Yuvaraj S, Lin F Y, Chang T H, et al. Thermal decomposition of metal nitrates in air and hydrogen environments[J]. Journal of Physical Chemistry B, 2003, 107(4):1044-1047. DOI:10.1021/jp026961c.17 Nissen D A, Meeker D E. Nitrate/nitrite chemistry in sodium nitrate-potassium nitrate melts[J]. Inorganic Chemistry, 1983, 22(5):716-721. DOI:10.1021/ic00147a004. |