1 Haynes C L, Van Duyne R P. Nanosphere lithography:a versatile nanofabrication tool for studies of size-dependent nanoparticle optics[J]. The Journal of Physical Chemistry B, 2001, 105:5599-5611. DOI:10.1021/jp010657m. 2 Gates B D, Xu Q, Stewart M, et al. New approaches to nanofabrication:molding, printing, and other techniques[J]. Chemical Reviews, 2005, 105(4):1171-1196. DOI:10.1021/cr030076o. 3 Sanders D P. Advances in patterning materials for 193 nm immersion lithography[J]. Chemical Reviews, 2010, 110(1):321-360. DOI:10.1021/cr900244n. 4 Bates F S. Polymer-polymer phase behavior[J]. Science, 1991, 251(4996):898-905. DOI:10.1126/science.251. 4996.898. 5 Bates F S, Fredrickson G H. Block copolymer thermodynamics:theory and experiment[J]. Annual Review of Physical Chemistry, 1990, 41(1):525-557. DOI:10.1146/annurev.pc.41.100190.002521. 6 Gaucher G, Dufresne M H, Sant V P, et al. Block copolymer micelles:preparation, characterization and application in drug delivery[J]. Journal of Controlled Release, 2005, 109(1-3):169-188. DOI:10.1016/j. jconrel.2005.09.034. 7 Kim H C, Park S M, Hinsberg W D. Block copolymer based nanostructures:materials, processes, and applications to electronics[J]. Chemical Reviews, 2009, 110(1):146-177. DOI:10.1021/cr900159v. 8 Bates C M, Maher M J, Janes D W, et al. Block copolymer lithography[J]. Macromolecules, 2013, 47(1):2-12. DOI:10.1021/ma401762n. 9 Smarsly B, Grosso D, Brezesinski T, et al. Highly crystalline cubic mesoporous TiO2 with 10-nm pore diameter made with a new block copolymer template[J]. Chemistry of Materials, 2004, 16(15):2948-2952. DOI:10.1021/cm0495966. 10 Bates F S, Schulz M F, Khandpur A K, et al. Fluctuations, conformational asymmetry and block copolymer phase behaviour[J]. Faraday Discussions, 1994, 98:7-18. DOI:10.1039/FD9949800007. 11 Chang S W, Chuang V P, Boles S T, et al. Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching[J]. Advanced Functional Materials, 2009, 19(15):2495-2500. DOI:10.1002/adfm. 200900181. 12 Aizawa M, Buriak J M. Block copolymer-templated chemistry on Si, Ge, InP, and GaAs surfaces[J]. Journal of the American Chemical Society, 2005, 127(25):8932-8933. DOI:10.1021/ja052281m. 13 Park S, Kim B, Wang J Y, et al. Fabrication of highly ordered silicon oxide dots and stripes from block copolymer thin films[J]. Advanced Materials, 2008, 20(4):681-685. DOI:10.1002/adma.200701997. 14 Li R R, Dapkus P D, Thompson M E, et al. Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography[J]. Applied Physics Letters, 2000, 76(13):1689-1691. DOI:10.1063/1.126137. 15 Cheng J Y, Ross C A, Chan V Z H, et al. Formation of a cobalt magnetic dot array via block copolymer lithography[J]. Advanced Materials, 2001, 13(15):1174-1178. DOI:10.1002/1521-4095(200108)13:15<1174:AID-ADMA1174>3.0.CO;2-Q. 16 Helfand E, Tagami Y. Theory of the interface between immiscible polymers Ⅱ[J]. The Journal of Chemical Physics, 1972, 56(7):3592-3601. DOI:10.1063/1. 1677735. 17 Helfand E. Theory of inhomogeneous polymers:fundamentals of the Gaussian random-walk model[J]. The Journal of Chemical Physics, 1975, 62(3):999-1005. DOI:10.1063/1.430517. 18 Drolet F, Fredrickson G H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J]. Physical Review Letters, 1999, 83(21):4317. DOI:10.1103/PhysRevLett.83.4317. 19 Tang C, Lennon E M, Fredrickson G H, et al. Evolution of block copolymer lithography to highly ordered square arrays[J]. Science, 2008, 322(5900):429-432. DOI:10.1126/science.1162950. 20 Albert J N L, Epps Ⅲ T H. Self-assembly of block copolymer thin films[J]. Materials Today, 2010, 13(6):24-33. DOI:10.1016/S1369-7021(10)70106-1. 21 Welander A M, Kang H, Stuen K O, et al. Rapid directed assembly of block copolymer films at elevated temperatures[J]. Macromolecules, 2008, 41(8):2759-2761. DOI:10.1021/ma800056s. 22 金鑫, 杨春明, 滑文强, 等. PS3000-b-PAA5000球形胶束温度效应的原位X射线小角散射技术研究[J]. 物理学报, 2008, 67(4):048301. DOI:10.7498/aps.67. 048301. JIN Xin, YANG Chunming, HUA Wenqiang, et al. Temperature dependence of spherical micelles of PS3000-b-PAA5000 studied by in-situ small angle X-ray scattering[J]. Acta Physica Sinica, 2018, 67(4):048301. DOI:10.7498/aps.67.048301. 23 Tian F, Li X H, Wang Y Z, et al. Small angle X-ray scattering beamline at SSRF[J]. Nuclear Science and Techniques, 2015, 26(3):030101. DOI:10.13538/j. 1001-8042/nst.26.030101. 24 Zhao N, Yang C, Zhang Q, et al. A general model for estimating the ordering of mesoporous film by grazing incidence small angle X-ray scattering[J]. Journal of Applied Physics, 2014, 115(20):204311. DOI:10.1063/1. 4875662. 25 Zhao N, Yang C, Wang Y, et al. Probing the surface microstructure of layer-by-layer self-assembly chitosan/poly (l-glutamic acid) multilayers:a grazing-incidence small-angle X-ray scattering study[J]. Materials Science and Engineering:C, 2016, 58:352-358. DOI:10.1016/j.msec.2015.08.048. 26 Dalnoki-Veress K, Forrest J A, Murray C, et al. Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films[J]. Physical Review E, 2001, 63(3):031801. DOI:10.1103/PhysRevE.63.031801. 27 Yang C, Onitsuka R, Takahashi I. Confinement effects on glass transition temperature, transition breadth, and linear expansivity:an ultraslow X-ray reflectivity study on supported ultrathin polystyrene films[J]. The European Physical Journal E, 2013, 36(6):66. DOI:10.1140/epje/i2013-13066-3. 28 Yang C, Ishimoto K, Matsuura S, et al. Depth-dependent inhomogeneous characteristics in supported glassy polystyrene films revealed by ultra-low X-ray reflectivity measurements[J]. Polymer Journal, 2014, 46(12):873. DOI:10.1038/pj.2014.80. 29 Roe R J. Methods of X-ray and neutron scattering in polymer science[M]. Oxford:Oxford University Press on Demand, 2000, 739. 30 孟昭富. 小角 X 射线散射理论及应用[M]. 长春:吉林科学技术出版社, 1996. MENG Zhaofu. Small angle X-ray scattering theory and the applications[M]. Changchun:Jilin Science and Technology Press, 1996. |