1 Dall'Osso A. A neutron balance approach in critical parameter determination[J]. Annals of Nuclear Energy, 2008, 35(9):1686-1694. DOI:10.1016/j.anucene.2008.02. 008. 2 Li R, Zhang L Y, Shi D F, et al. Criticality search of soluble boron iteration in MC code JMCT[C]. International Youth Nuclear Congress (IYNC 2016), Hangzhou, China, 2016. DOI:10.1016/j.egypro.2017.08. 118. 3 Aaron M B, William R M. Correlated sampling Monte Carlo for critical boron search[C]. MC2015, Nashville, Tennessee, 2015. 4 李泽光, 王侃, 邓景康. 考虑源扰动效应的高阶蒙特卡罗微扰研究[J]. 核动力工程, 2014, 35(6):6-10. DOI:10.13832/j.jnpe.2014.06.0006. LI Zeguang, WANG Kan, DENG Jingkang. Research on high-order perturbation calculation method with perturbed source effects[J]. Nuclear Power Engineering, 2014, 35(6):6-10. DOI:10.13832/j.jnpe.2014.06.0006. 5 Yasunobu N, Takamasa M. Impact of perturbed fission source on the effective multiplication factor in Monte Carlo perturbation calculations[J]. Journal of Nuclear Science & Technology, 2005, 42(5):428-441. DOI:10.3327/jnst.42.428. 6 Shim H J, Kim C H. Adjoint sensitivity and uncertainty analyses in Monte Carlo forward calculation[J]. Journal of Nuclear Science & Technology, 2011, 48(12):1453-1461. DOI:10.1080/18811248.2011.9711838. 7 Wu Y. Multi-functional neutronics calculation methodology and program for nuclear design and radiation safety evaluation[J]. Fusion Science and Technology, 2018, 74:1475162. DOI:10.1080/15361055.2018.1475162. 8 Wu Y, Chen Z, Hu L, et al. Identification of safety gaps for fusion demonstration reactors[J]. Nature Energy, 2016, 1:16154. DOI:10.1038/nenergy.2016.154. 9 Wu Y, Song J, Zheng H, et al. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC[J]. Annals of Nuclear Energy, 2015, 82:161-168. DOI:10.1051/snamc/201406022. 10 Wu Y, FDS Team. CAD-based interface programs for fusion neutron transport simulation[J]. Fusion Engineering and Design, 2009, 84(7-11):1987-1992. DOI:10.1016/j.fusengdes.2008.12.041. 11 吴宜灿, 宋婧, 胡丽琴, 等. 超级蒙特卡罗核计算仿真软件系统SuperMC[J]. 核科学与工程, 2016, 36(1):62-71. WU Yican, SONG Jing, HU Liqin, et al. Super Monte Carlo simulation program for nuclear and radiation process:SuperMC[J]. Nuclear Science and Engineering, 2016, 36(1):62-71. 12 Wu Y. Conceptual design of the China fusion power plant FDS-Ⅱ[J]. Fusion Engineering and Design, 2008, 83(10-12):1. 13 Wu Y, Jiang J, Wang M, et al. A fusion-driven subcritical system concept based on viable technologies[J]. Nuclear Fusion, 2011, 51(10):103036. DOI:10.1088/0029-5515/51/10/103036. 14 Wu Y, Bai Y, Song Y, et al. Development strategy and conceptual design of China Lead-based Research Reactor[J]. Annals of Nuclear Energy, 2016, 87:511-516. DOI:10.1016/j.anucene.2015.08.015. 15 Wu Y. Design and R&D progress of China Lead-Based Reactor for ADS research facility[J]. Engineering, 2016, 2(1):124-131. DOI:10.1016/J.ENG.2016.01.023. 16 Huang Q, Baluc N, Dai Y, et al. Recent progress of R&D activities on reduced activation ferritic/martensitic steels[J]. Journal of Nuclear Materials, 2013, 442(1-3):S2-S8. DOI:10.1016/j.jnucmat.2012.12.039. 17 Huang Q, Li C, Li Y, et al. Progress in development of China low activation martensitic steel for fusion application[J]. Journal of Nuclear Materials, 2007, s367-370(10):142-146. DOI:10.1016/j.jnucmat.2007.03. 153. 18 Huang Q. Status and improvement of CLAM for nuclear application[J]. Nuclear Fusion, 2017, 57:086042. DOI:10.1088/1741-4326/aa763f. 19 Wu Y. Design status and development strategy of China liquid lithium-lead blankets and related material technology[J]. Journal of Nuclear Materials, 2007, 367(4):1410-1415. DOI:10.1016/j.jnucmat.2007.04.031. 20 Wu Y, Liu C, Song G, et al. Development of high intensity D-T fusion neutron generator (HINEG)[C]. European Physical Journal Web of Conferences, European Physical Journal Web of Conferences, 2017:03006. DOI:10.1051/epjconf/201715303006. 21 吴宜灿, 刘超, 宋钢, 等. 强流氘氚聚变中子源HINEG设计研究[J]. 核科学与工程, 2016, 36(1):77-83. WU Yican, LIU Chao, SONG Gang, et al. Design study of high intensity D-T fusion neutron generator HINGE[J]. Nuclear Science and Engineering, 2016, 36(1):77-83. 22 谢仲生, 邓力. 中子输运理论数值计算方法[M]. 西安:西北工业大学出版社, 2005:303-345. XIE Zhongsheng, DENG Li. Neutron transport theory numerical method[M]. Xi'an:Northwestern Polytechnical University Press, 2005:303-345. 23 Hurwitz H. Physical interpretation of the adjoint flux:iterated fission probability[M]. Naval Reactor Physics Handbook I, U.S. Atomic Energy Commission, 1964:864-869. 24 丘意书, 梁金刚, 王侃. 基于反复裂变几率法的敏感性分析初步研究[J]. 核动力工程, 2014, 35(S2):83-86. DOI:10.13832/j.jnpe.2014.S2.0083. QIU Yishu, LIANG Jingang, WANG Kan. Preliminary study of sensitivity analysis based on iterated fission probability method[J]. Nuclear Power Engineering, 2014, 35(S2):83-86. DOI:10.13832/j.jnpe.2014.S2.0083. 25 刘勇, 曹良志, 吴宏春, 等. 基于经典微扰理论的特征值灵敏度和不确定性分析[J]. 原子能科学技术, 2015, 49(7):1247-1253. LIU Yong, CAO Liangzhi, WU Hongchun, et al. Eigenvalue sensitivity and uncertainty analysis based on classical perturbation theory[J]. Atomic Energy Science and Technology, 2015, 49(7):1247-1253. 26 佘顶, 梁金刚, 吴高晨, 等. 堆用蒙卡程序RMC-Beta2.0用户使用手册[CP/DK]. 北京:清华REAL, 2013:18-19. SHE Ding, LIANG Jingang, WU Gaochen, et al. Monte Carlo code for reactor analysis RMC-Beta2.0 user manual[CP/DK]. Beijing:Tsinghua University REAL, 2013:18-19. 27 甘佺, 吴斌, 宋婧, 等. 基于参数的可视化裂变堆芯蒙特卡罗自动建模方法[J]. 核技术, 2016, 39(6):060501. DOI:10.11889/j.0253-3219.2016.hjs.39.060501. GAN Quan, WU Bin, SONG Jing, et al. Rapid parameter-based and visual Monte Carlo modeling method of fission reactor core[J]. Nuclear Techniques, 2016, 39(6):060501. DOI:10.11889/j.0253-3219.2016.hjs.39.060501. 28 Gan Q, Wu B, Yu S, et al. CAD-based hierarchical geometry conversion method for modeling of fission reactor cores[J]. Annals of Nuclear Energy, 2016, 94:369-375. DOI:10.1016/j.anucene.2016.03.013. 29 Pan X L, Wang J Q, Yuan R, et al. Biasing transition rate method based on direct MC simulation for probabilistic safety assessment[J]. Nuclear Science and Techniques, 2017, 28(7):91. DOI:10.1007/s41365-017-0255-2. |