1 Xu H, Dai Z, Cai X. Some physical issues of the thorium molten salt reactor nuclear energy system[J]. Nuclear Physics News, 2014, 24(2):24-30. DOI:10.1080/10619127.2014.910434. 2 Li Q. Current progress in pyroprocess technologies for TMSR in SINAP[R]. Idaho, USA:2014 IPRC, 2014. 3 Chamelot P, Massot L, Cassayre L, et al. Electrochemical behaviour of thorium(IV) in molten LiF-CaF2, medium on inert and reactive electrodes[J]. Electrochimica Acta, 2010, 55(16):4758-4764. DOI:10.1016/j.electacta.2010. 03.073. 4 Chamelot P, Massot L, Hamel C, et al. Feasibility of the electrochemical way in molten fluorides for separating thorium and lanthanides and extracting lanthanides from the solvent[J]. Journal of Nuclear Materials, 2007, 360(1):64-74. DOI:10.1016/j.jnucmat.2006.08.015. 5 Clayton F R, Mamantov G, Manning D L. Electrochemical studies of uranium and thorium in molten LiF-NaF-KF at 500℃[J]. Journal of Electrochemical Society, 1974, 121(1):86-90. DOI:10.1149/1.2396838. 6 Sakamura Y, Hijikata T, Kinoshita K, et al. Measurement of standard potentials of actinides (U, Np, Pu, Am) in LiCl-KCl eutectic salt and separation of actinides from rare earths by electrorefining[J]. Journal of Alloys & Compounds, 1998, s271-273(98):592-596. DOI:10. 1016/S0925-8388(98)00166-2. 7 Misra M, Raja K S, Jaques A V, et al. Effect of addition of multi-component lanthanides to LiCl-KCl eutectic on thermal and electrochemical properties[C]. ECS Meeting, 2015:351-360. DOI:10.1149/1.3484793. 8 Castrillejo Y, Bermejo R, Martínez A M, et al. Application of electrochemical techniques in pyrochemical processeselectrochemical behaviour of rare earths at W, Cd, Bi and Al electrodes[J]. Journal of Nuclear Materials, 2007, 360(1):32-42. DOI:10.1016/j.jnucmat.2006.08.011. 9 Marsden K C, Pesic B. Evaluation of the electrochemical behavior of CeCl3 in molten LiCl-KCl eutectic utilizing metallic Ce as an anode[J]. Journal of the Electrochemical Society, 2011, 158(6):F111-F120. DOI:10.1149/1. 3575637. 10 Liu K, Liu Y L, Yuan L Y, et al. Electroextraction of gadolinium from Gd2O3, in LiCl-KCl-AlCl3 molten salts[J]. Electrochimica Acta, 2013, 109(11):732-740. DOI:10.1016/j.electacta.2013.07.084. 11 Yamana H, Park B G, Shirai O, et al. Electrochemically produced divalent neodymium in chloride melt[J]. Cheminform, 2006, S408-412(18):66-70. DOI:10.1016/j.jallcom.2005.04.104. 12 Iida T, Nohira T, Ito Y. Electrochemical formation of Sm-Co alloy films by Li codeposition method in a molten LiCl-KCl-SmCl3 system[J]. Electrochimica Acta, 2003, 48(7):901-906. DOI:10.1016/S0013-4686(02)00786-7. 13 Wang X, Huang W, Gong Y, et al. Electrochemical behavior of Th(IV) and its electrodeposition from ThF4-LiCl-KCl melt[J]. Electrochimica Acta, 2016, 196:286-293. DOI:10.1016/j.electacta.2016.02.184. 14 一种银/氯化银参比电极及其制作方法[P]. 中华人民共和国. 201510282229.3.20150529. A Ag/AgCl reference electrode and its preparation method[P]. China. 201510282229.3.20150529. 15 Long D, Huang W, Jiang F, et al. Study on the electrochemical extraction of rare earth elements from FLINAK[C]. Global 2013, Salt Lake City, Utah, 2013:411-418. 16 Huang W, Tian L, She C, et al. Electrochemical behavior of Europium(Ⅲ)-Europium(Ⅱ) in LiF-NaF-KF molten salt[J]. Electrochimica Acta, 2014, 147:114-120. DOI:10.1016/j.electacta.2014.08.119. 17 Bermejo M R, De la Rosa F, Barrado E, et al. Cathodic behaviour of europium (Ⅲ) on glassy carbon, electrochemical formation of Al4Eu, and oxoacidity reactions in the eutectic LiCl-KCl[J]. Journal of Electroanalytical Chemistry, 2007, 603(1):81-95. DOI:10.1016/j.jelechem.2007.01.018. 18 Chamelot P, Lafage B, Taxil P. Using square-wave voltammetry to monitor molten alkaline fluoride baths for electrodeposition of niobium[J]. Electrochimica Acta, 1998, 43(5-6):607-616. DOI:10.1016/S0013-4686(97)00102-3. 19 Delpech S, Jaskierowicz S, Rodrigues D. Electrochemistry of thorium fluoride in LiCl-KCl eutectic melts and methodology for speciation studies with fluorides ions[J]. Electrochimica Acta, 2014, 144:383-390. DOI:10.1016/j.electacta.2014.07.096. 20 Serp J, Konings R J M, Malmbeck R, et al. Electrochemical behavior of plutonium ion in LiCl-KCl eutectic melts[J]. Journal of Electroanalytical Chemistry, 2004, 561(1-2):143-148. DOI:10.1016/j.jelechem.2003. 07.027. 21 Fusselman S P, Roy J J, Grimmett D L, et al. Thermodynamic properties for rare earths and americium in pyropartitioning process solvents[J]. Biophysics & Other Topics, 1999, 146(7):2573-2580. DOI:10.1149/1.1391974. 22 Wang C, Yi L, Hu H E, et al. Electrochemical behavior of cerium ion in molten LiCl-KCl[J]. Journal of Rare Earths, 2013, 31(4):405-409. DOI:10.1016/S1002-0721(12) 60295-6. 23 Yoon D, Phongikaroon S. Electrochemical properties and analyses of CeCl3 in LiCl-KCl eutectic salt[J]. Journal of the Electrochemical Society, 2015, 162(10):E237-E243. DOI:10.1149/2.0401510jes. 24 Kim S H, Paek S, Kim T J, et al. Electrode reactions of Ce3+/Ce couple in LiCl-KCl solutions containing CeCl3 at solid W and liquid Cd electrodes[J]. Electrochimica Acta, 2012, 85(85):332-335. DOI:10.1016/j.electacta.2012. 08.084. 25 Caravaca C, Córdoba G D, Tomás M J, et al. Electrochemical behaviour of gadolinium ion in molten LiCl-KCl eutectic[J]. Journal of Nuclear Materials, 2007, 360(1):25-31. DOI:10.1016/j.jnucmat.2006.08.009. 26 Zhou W, Liu Y L, Liu A K, et al. Electroreduction of Gd3+ on W and Zn electrodes in LiCl-KCl eutectic:a comparison study[J]. Journal of the Electrochemical Society, 2015, 162(10):D531-D539. DOI:10.1149/2. 0541510jes. 27 Vandarkuzhali S, Chandra M, Ghosh S, et al. Investigation on the electrochemical behavior of neodymium chloride at W, Al and Cd electrodes in molten LiCl-KCl eutectic[J]. Electrochimica Acta, 2014, 145(145):86-98. DOI:10.1016/j.electacta.2014.08.069. 28 Cordoba G, Caravaca C. An electrochemical study of samarium ions in the molten eutectic LiCl+KCl[J]. Journal of Electroanalytical Chemistry, 2004, 572(1):145-151. DOI:10.1016/j.jelechem.2004.05.029. 29 Castrillejo Y, Fernández P, Medina J, et al. Electrochemical extraction of samarium from molten chlorides in pyrochemical processes[J]. Electrochimica Acta, 2011, 56(24):8638-8644. DOI:10.1016/j.electacta. 2011.07.059. 30 Caravaca C, Córdoba G, Tomás M J. Electrochemical study of europium trichloride in molten eutectic LiCl-KCl[C]. Information Exchange Meeting on P&T, Seoul, Republic of Korea, 2015. 31 刘雅兰, 叶国安, 柴之芳, 等. 铝合金化技术在乏燃料干法后处理中的应用研究进展[J]. 核化学与放射化学, 2017, 39(1):13-21. DOI:10.7538/hhx. 2017.39.01.0013. LIU Yalan, YE Guoan, CHAI Zhifang, et al. Research progress on molten salt electrorefining process by forming aluminum alloys[J]. Journal of Nuclear and Radiochemistry, 2017, 39(1):13-21. DOI:10.7538/hhx. 2017.39.01.0013. 32 Berzins T, Delahay P. Kinetics of fast electrode reactions[J]. Journal of the American Chemical Society, 1955, 77(24):6448-6453. DOI:10.1021/ja01629a006. 33 Bard A J, Faulkner L R. Electrochemical methods:fundamentals and applications[M]. USA:Wiley, 1980. 34 Bermejo M R, Gómez J, Medina J, et al. The electrochemistry of gadolinium in the eutectic LiCl-KCl on W and Al electrodes[J]. Journal of Electroanalytical Chemistry, 2006, 588(2):253-266. DOI:10.1016/j. jelechem.2005.12.031. 35 Wang Z H, Rappleye D, Simpson M F. Voltammetric analysis of mixtures of molten eutectic LiCl-KCl containing LaCl3 and ThCl3 for concentration and diffusion coefficient measurement[J]. Electrochimica Acta, 2016, 191:29-43. DOI:10.1016/j.electacta.2016.01.021. 36 Tumidajski P J, Flengas S N. Potential measurements of thorium tetrachloride in alkali halide solution[J]. Canadian Journal of Chemistry, 2011, 69(3):462-467. DOI:10.1139/v91-069. |