1 Villalobos J C, Serna S A, Campillo B, et al. Evaluation of mechanical properties of an experimental microalloyed steel subjected to tempering heat treat and its effect on hydrogen embrittlement[J]. International Journal of Hydrogen Energy, 2017, 42(1):689-698. DOI:10.1016/j.ijhydene.2016.10.103. 2 Pecko S, Sojak S, Slugen V. Comparative study of irradiated and hydrogen implantation damaged German RPV steels from PAS point of view[J]. Applied Surface Science, 2014, 312(9):172-175. DOI:10.1016/j.apsusc. 2014.04.113. 3 Slugen V, Pecko S, Sojak S. Experimental studies of irradiated and hydrogen implantation damaged reactor steels[J]. Journal of Nuclear Materials, 2015, 468:285-288. DOI:10.1016/j.jnucmat.2015.05.048. 4 曹必松, 高乃飞, 王德保, 等. 纯铝中氢致缺陷的正电子湮没和透射电镜研究[J]. 核技术, 1994, 17(10):601-604. CAO Bisong, GAO Naifei, WANG Debao, et al. A study of hydrogen induced defects in aluminium by PAT and TEM[J]. Nuclear Techniques, 1994, 17(10):601-604. 5 万发荣, 朱晓峰, 肖纪美, 等. 氢对铁中缺陷行为的影响[J]. 物理学报, 1990, 39(7):1093-1096. WAN Farong, ZHU Xiaofeng, XIAO Jimei, et al. Effect of hydrogen on the behaviour of defects in iron[J]. Acta Physica Sinica, 1990, 39(7):1093-1096. 6 Yoshiie T, Xu Q, Sato K. Reaction kinetic analysis of damage rate effects on defect structural evolution in Fe-Cu[J]. Nuclear Instruments & Methods in Physics Research, 2013, 303:37-41. DOI:10.1016/j.jnucmat. 2008.02.059. 7 Mathon M H, Barbu A, Dunstetter F, et al. Experimental study and modelling of copper precipitation under electron irradiation in dilute FeCu binary alloys[J]. Journal of Nuclear Materials, 1997, 245(2-3):224-237. DOI:10.1016/S0022-3115(97)00010-X. 8 Xu Q, Yoshiie T, Sato K. Dose dependence of Cu precipitate formation in Fe-Cu model alloys irradiated with fission neutrons[J]. Physical Review B, 2006, 73(13):134115. DOI:10.1103/PhysRevB.73.134115. 9 Subashiev A V, Nee H H. Hydrogen trapping at divacancies and impurity-vacancy complexes in nickel:first principles study[J]. Journal of Nuclear Materials, 2017, 487:135-142. DOI:10.1016/j.jnucmat.2017.01. 037. 10 Cizek J, Melikhova O, Prochazka I. Hydrogen-induced defects and multiplication of dislocations in Palladium[J]. Journal of Alloys & Compounds, 2015, 645(1):S312-S315. DOI:10.1016/j.jallcom.2014.12.155. 11 Chen Q Z, Zhou G H, Huang Y Z, et al. Hydrogen-inducing nanovoids in thin crystals of 310 stainless steel[J]. Journal of Materials Science, 1998, 33(19):4813-4819. DOI:10.1023/A:100442621. 12 Nagai Y, Takadate K, Tang Z, et al. Positron annihilation study of vacancy-solute complex evolution in Fe-based alloys[J]. Physical Review B, 2003, 67(22):224202. DOI:10.1103/PhysRevB.67.224202. 13 Xu Q, Yoshiie T, Sato K. Temperature dependence of Cu precipitation in neutron irradiated Fe-Cu alloys[J]. Physica Status Solidi C-Current Topics in Solid State Physics, 2007, 4(10):3573-3576. DOI:10.1002/pssc. 200675838. 14 Cao X Z, Xu Q, Sato K, et al. Migration behavior of vacancies in electron irradiated Fe-Cu alloys[J]. Physica Status Solidi C-Current Topics in Solid State Physics, 2009, 6(11):2355-2358. DOI:10.1002/pssc.200982131. 15 Eldrup M, Singh B N. Study of defect annealing behaviour in neutron irradiated Cu and Fe using positron annihilation and electrical conductivity[J]. Journal of Nuclear Materials, 2000, 276(1-3):269-277. DOI:10.1016/S0022-3115(99)00186-5. 16 Sato K, Yoshimasa T, Ishizaki T, et al. Behavior of vacancies near edge dislocations in Ni and α-Fe:positron annihilation experiments and rate theory calculations[J]. Physical Review B, 2007, 75(9):133-134. DOI:10.1103/PhysRevB.75.094109. 17 Jin S X, Zhang P, Lu E Y, et al. Correlation between Cu precipitates and irradiation defects in Fe-Cu model alloys investigated by positron annihilation spectroscopy[J]. Acta Materialia, 2016, 103(103):658-664. DOI:10.1016/j.actamat.2015.10.051. 18 Sugiyama S, Ohkubo H, Fukuzato K, et al. Positron-lifetime study of electrically hydrogen charged Ni, austenitic stainless steel and Fe[J]. Journal of Nuclear Materials, 2000, 283-287(3):858-862. DOI:10.1016/S0022-3115(00)00345-7. 19 陈叶青, 吴奕初, 王柱. 用符合多普勒展宽谱(CDB)研究不锈钢中氢与缺陷的相互作用[J]. 核技术, 2006, 29(4):249-252. CHEN Yeqing, WU Yichu, WANG Zhu. Interaction between hydrogen and defects in stainless steel studied by coincidence Doppler broadening spectra[J]. Nuclear Techniques, 2006, 29(4):249-252. 20 Kao P W, Uee R W, Byrne J G. A study of hydrogen charging of nickel by positron Doppler broadening[J]. Philosophical Magazine A, 1979, 39(4):517-527. DOI:10.1080/01418617908239288. 21 吴奕初, 朱梓英, 伊东芳子, 等. 镍中氢与缺陷相互作用的正电子寿命和多普勒展宽研究[J]. 物理学报, 1997, 46(2):406-410. WU Yichu, ZHU Zhiying, Yoshiko Itoh, et al. Positron lifetime and doppler broadening techniques studies on the interaction between hydrogen and defects in nickel[J]. Acta Physica Sinica, 1997, 46(2):406-410. 22 Kuramoto E, Tsutsumi T, Ueno K, et al. Positron lifetime calculations on vacancy clusters and dislocations in Ni and Fe[J]. Computational Materials Science, 1999, 14(1-4):28-35. DOI:10.1016/S0927-0256(98)00068-8. 23 Cao B S, Ichinose H, Yamamoto S, et al. Characterization of hydrogen-induced defects in iron by positron-annihilation[J]. Philosophical Magazine A, 1993, 67(5):1177-1186. DOI:10.1080/01418619308224766. 24 Wu Y C, Tian Z Z, Chang X R, et al. Positron-annihilation study on hydrogen damage in iron of high purity[J]. Scr Metall Master, 1991, 25(6):1431-1434. DOI:10.1016/0956-716X(91)90428-4. 25 Johnston I A, Dobson P S, Smallman R E. The effect of multiple quenching on stability and growth of defect tetrahedra[J]. Philosophical Magazine, 1968, 17(150):1289-1293. DOI:10.1080/14786436808223203. 26 Ohkubo H, Tang Z, Nagai Y, et al. Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe[J]. Materials Science & Engineering A, 2003, 350(1-2):95-101. DOI:10.1016/S0921-5093(02) 00705-0. 27 彭栋梁, 王天民, 童志深. 形变充氢多晶纯钴中缺陷的正电子湮没研究[J]. 物理学报, 1992, 41(7):1106-1110. PENG Dongliang, WANG Tianmin, TONG Zhishen. Investigation on the defects in the post-deformation hydrogen-charged polycrystalline pure Co by positron annihilation[J]. Acta Physica Sinica, 1992, 41(7):1106-1110. |