1 Kallenbach A, Neu R, Dux R, et al. Tokamak operation with high-Z plasma facing components[J]. Plasma Physics & Controlled Fusion, 2005, 47(12B): 207-222. DOI: 10.1088/0741-3335/47/12B/S16. 2 Kaufmann M, Neu R. Tungsten as first wall material in fusion devices[J]. Fusion Engineering and Design, 2007, 82(5): 521-527. DOI: 10.1016/j.fusengdes.2007.03.045. 3 李纯, Greuner H, 周鑫, 等. 轧制钨板在氦源高热流作用下的形貌演化[J]. 核技术, 2015, 38(7): 070604. DOI: 10.11889/j.0253-3219.2015.hjs.38.070604.LI Chun, Greuner H, ZHOU Xin, et al. Surface modifications of rolled W during exposure to high heat loads with He[J]. Nuclear Techniques, 2015, 38(7): 070604. DOI: 10.11889/j.0253-3219.2015.hjs.38.070604. 4 Matthews G F, Edwards P, Greuner H, et al. Current status of the JET ITER-like wall project[J]. Physica Scripta, 2009, T138: 014030. DOI: 10.1088/0031-8949/2009/T138/014030. 5 Neu R, Balden M, Bobkov V, et al. Plasma wall interaction and its implication in an all tungsten divertor tokamak[J]. Plasma Physics & Controlled Fusion, 2007, 49(12B): 59-70. DOI: 10.1088/0741-3335/49/12B/S04. 6 Li Q, Qi P, Zhou H S, et al. R&D issues of W/Cu divertor for EAST[J]. Fusion Engineering and Design, 2010, 85(7-9): 1106-1112. DOI: 10.1016/j.fusengdes.2010.02. 017. 7 Guo H Y, Hill D N, Leonard A W, et al. Developing and validating advanced divertor solutions on DⅢ-D for next-step fusion devices[J]. Nuclear Fusion, 2016, 56(12): 126010. DOI: 10.1088/0029-5515/56/12/126010. 8 Pitts R A, Carpentier S, Escourbiac F, et al. A full tungsten divertor for ITER: physics issues and design status[J]. Journal of Nuclear Materials, 2013, 438: S48-S56. DOI: 10.1016/j.jnucmat.2013.01.008. 9 Pütterich T, Neu R, Dux R, et al. Calculation and experimental test of the cooling factor of tungsten[J]. Nuclear Fusion, 2010, 50(2): 025012. DOI: 10.1088/0029-5515/50/2/025012. 10 Song Y T, Wu S T, Li J G, et al. Concept design of CFETR tokamak machine[J]. IEEE Transactions on Plasma Science, 2014, 42(3): 503-509. DOI: 10.1109/TPS.2014.2299277. 11 Wan B N, Ding S Y, Qian J P, et al. Physics design of CFETR: determination of the device engineering parameters[J]. IEEE Transactions on Plasma Science, 2014, 42(3): 495-502. DOI: 10.1109/TPS.2013.2296939. 12 Luo Z P, Xiao B, Guo Y, et al. Concept design of optimized snowflake diverted equilibria in CFETR[J]. IEEE Transactions on Plasma Science, 2014, 42(4): 1021-1025. DOI: 10.1109/TPS.2014.2307581. 13 Coster D P, Bonnin X, Braams B, et al. Further developments of the edge transport simulation package, SOLPS[C]. Proceedings of the 19th IAEA Fusion Energy Conference, Lyon, France, 2002. 14 Stangeby P C, Elder J D. Understanding impurity retention by divertors[J]. Journal of Nuclear Materials, 1995, 220-222: 193-197. DOI: 10.1016/0022-3115(94) 00410-2. 15 Geier A, Krieger K, Elder J D, et al. Modeling of tungsten transport in the SOL for sources at the central column of ASDEX upgrade using DIVIMP[J]. Journal of Nuclear Materials, 2003, 313-316: 1216-1220. DOI: 10.1016/S0022-3115(02)01519-2. 16 Schmid K, Krieger K, Kukushkin A, et al. DIVIMP modeling of tungsten impurity transport in ITER[J]. Journal of Nuclear Materials, 2007, 363-365: 674-679. DOI: 10.1016/j.jnucmat.2007.01.045. 17 Jarvinen A, Groth M, Moulton D, et al. Simulations of tungsten transport in the edge of JET ELMy H-mode plasmas[J]. Journal of Nuclear Materials, 2013, 438: S1005-S1009. DOI: 10.1016/j.jnucmat.2013.01.219. 18 Lisgo S W, Borner P, Kukushkin A, et al. Design assessment of ITER port plug plasma facing material options[J]. Journal of Nuclear Materials, 2011, 415(1): S965-S968. DOI: 10.1016/j.jnucmat.2010.11.061. 19 Lisgo S W, Kukushkin A, Pitts R A, et al. Design assessment of tungsten as an upper panel plasma facing material in ITER[J]. Journal of Nuclear Materials, 2013, 438: S580-S584. DOI: 10.1016/j.jnucmat.2013.01.121. 20 Wang F Q, Chen Y P, Hu L Q, et al. Predictive modeling for performance assessment of ITER-like divertor in China fusion engineering testing reactor[J]. Journal of Fusion Energy, 2015, 34(5): 1077-1087. DOI: 10.1007/s10894-015-9925-4. 21 Chen B, Mao S F, Luo Z P, et al. SOLPS modelling of detachment in lower single-null divertor for China fusion engineering testing reactor[C]. Proceedings of ICONE-23, ICONE23-1882, 2015. 22 Mao S F, Guo Y, Peng X B, et al. Evaluation of target-plate heat flux for a possible snowflake divertor in CFETR using SOLPS[J]. Journal of Nuclear Materials, 2015, 463: 1233-1237. DOI: 10.1016/j.jnucmat.2014.11. 078. 23 吴昊声, 毛世峰, 陈彬, 等. 中国聚变工程实验堆雪花偏滤器脱靶运行的SOLPS模拟[J]. 核技术, 2015, 38(11): 110601. DOI: 10.11889/j.0253-3219.2015.hjs.38. 110601.WU Haosheng, MAO Shifeng, CHEN Bin, et al. Simulation study on detachment operation of snowflake divertor for CFETR[J]. Nuclear Techniques, 2015, 38(11): 110601. DOI: 10.11889/j.0253-3219.2015.hjs.38.110601. 24 Kukushkin A S, Pacher H D, Pacher G W, et al. Scaling laws for edge plasma parameters in ITER from two-dimensional edge modelling[J]. Nuclear Fusion, 2003, 43(8): 716-723. DOI: 10.1088/0029-5515/43/8/312. 25 Eckstein W, Garciá-Rosales C, Roth J, et al. Threshold energy for sputtering and its dependence on angle of incidence[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993, 83(1-2): 95-109. DOI: 10.1016/0168-583X(93)95913-P. 26 Stangeby P C. The plasma boundary of magnetic fusion devices[M]. Bristol: Institute of Physics Publishing, 2000: 69. 27 Reiter D, Baelmans M, Borner P. The EIRENE and B2-EIRENE codes[J]. Fusion Science and Technology, 2005, 47(2): 172-186. DOI: 10.13182/FST47-172. 28 Verbeek H, Stober J. Coster D P, et al. Interaction of charge exchange neutrals with the main chamber walls of plasma machines[J]. Nuclear Fusion, 1998, 38(12): 1789-1803. DOI: 10.1088/0029-5515/38/12/305. 29 Baelmans M, Borner P, Dekeyser W, et al. Tokamak plasma edge modelling including the main chamber wall[J]. Nuclear Fusion, 2011, 51(8): 083023. DOI: 10.1088/0029-5515/51/8/083023. 30 Marandet Y, Bufferand H, Bucalossi J, et al. Assessment of tungsten sources in the edge plasma of WEST[J]. Journal of Nuclear Materials, 2015, 463: 629-633. DOI: 10.1016/j.jnucmat.2014.11.030. 31 Chankin A V, Coster D P, Dux R. Monte Carlo simulations of tungsten redeposition at the divertor target[J]. Plasma Physics & Controlled Fusion, 2014, 56(2): 025003. DOI: 10.1088/0741-3335/56/2/025003. 32 Engelhardt W, Feneberg W. Influence of an ergodic magnetic limiter on the impurity content in a tokamak[J]. Journal of Nuclear Materials, 1978, 76-77: 518-520. DOI: 10.1016/0022-3115(78)90198-8. 33 Elder J D, Stangeby P C, Whyte D G, et al. OEDGE modeling of 13C deposition in the inner divertor of DⅢ-D[J]. Journal of Nuclear Materials, 2005, 337-339: 79-83. DOI: 10.1016/j.jnucmat.2004.10.138. 34 Stangeby P C, Elder J D, McLean A G, et al. Experimentally-based E′B drifts in the DⅢ-D divertor and SOL calculated from integration of Ohm's law using Thomson scattering measurements of Te and ne[J]. Nuclear Materials and Energy, 2017, 12: 876-881. DOI: 10.1016/j.nme.2017.03.021. 35 Stangeby P C. The chodura sheath for angles of a few degrees between the magnetic field and the surface of divertor targets and limiters[J]. Nuclear Fusion, 2012, 52(8): 083012. DOI: 10.1088/0029-5515/52/8/083012. 36 Ding R, Stangeby P C, Rudakov D L, et al. Simulation of gross and net erosion of high-Z materials in the DⅢ-D divertor[J]. Nuclear Fusion, 2016, 56(1): 016021. DOI: 10.1088/0029-5515/56/1/01602. |