1 Radel R F, Kulcinski G L. Implantation of He+ in candidate fusion first wall materials[J]. Journal of Nuclear Materials, 2007, 367-370:434-439. DOI:10.1016/j. jnucmat.2007.03.119.2 Nygren R E, Raffray R, Whyte D, et al. Recent advances in radiation materials science from the US fusion reactor materials program[J]. Journal of Nuclear Materials, 2011, 417:451-456. DOI:10.1088/0022-3727/47/32/323001.3 Fu E G, Wang Y Q, Nastasi M. Mechanisms for ion-irradiation-induced relaxation of stress in mosaic structured Cu thin films[J]. Journal of Physics D:Applied Physics, 2012, 45(49):495303. DOI:10.1088/0022-3727/45/49/495303.4 Kajita S, Yoshida T, Kitaoka D, et al. Helium plasma implantation on metals:nanostructure formation and visible-light photocatalytic response[J]. Journal of Applied Physics, 2013, 113:134301. DOI:10.1063/1.4798597.5 Mittal G, Lahiri I. Recent progress in nanostructured next-generation field emission devices[J]. Journal of Physics D:Applied Physics, 2014, 47(32):323001.6 BaldWin M J, Doerner R P. Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades[J]. Journal of Nuclear Materials, 2010, 404:165-173. DOI:10.1016/j.jnucmat.2010.06.034.7 Zenobia S J, Garrison L M, Gerald L. The response of polycrystalline tungsten to 30 keV helium ion implantation at normal incidence and high temperatures[J]. Journal of Nuclear Materials, 2012, 425:83-92. DOI:10.1016/j. jnucmat.2011.10.029.8 Tanyeli ĺ, Marot L, Mathys D, et al. Surface modifications induced by high fluxes of low energy helium ions[J]. Scientific Reports, 2015, 5:9779. DOI:10.1038/srep09779.9 Sandoval L, Perez D, Uberuaga B P, et al. Competing kinetics and He bubble morphology in W[J]. Physical Review Letters, 2015, 114(10):5502. DOI:10.1103/PhysRevLett.114.105502.10 Ito A M, Takayama A, Oda Y, et al. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation[J]. Journal of Nuclear Materials, 2015, 463:109-115. DOI:10.1016/j.jnucmat.2015.01.018.11 Qi Y, You Y W, Liu L, et al. Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation[J]. Scientific Reports, 2015, 5:10959. DOI:10.1038/srep10959.12 Ran G, Wu S H, Liu X, et al. The effect of crystal orientation on the behavior of a polycrystalline tungsten surface under focused Ga+ ion bombardment[J]. Nuclear Instruments and Methods in Physics Research Section B, 2012, 289:39-42. DOI:10.1016/j.nimb.2012.08.008.13 Nordlund K, Björkas C, Ahlgren T, et al. Multiscale modelling of plasma-wall interactions in fusion reactor conditions[J]. Journal of Physics D:Applied Physics, 2014, 47(22):224018. DOI:10.1088/0022-3727/47/22/22401854.14 Fan H Y, Wu Z J, Sun T, et al. Efficient plasma-assisted approach in nanostructure fabrication of tungsten[J]. Materials & Design, 2016, 89:78-84. DOI:10.1016/j.matdes.2015.09.139.15 Miyamoto M, Takaoka H, Ono K, et al. Crystal orientation dependence of surface modification in molybdenum mirror irradiated with helium ions[J]. Journal of Nuclear Materials, 2014, 455:297-300. DOI:10.1016/j.jnucmat. 2014.06.030.16 Pentecoste L, Brault P, Thomann A L, et al. Low energy and low fluence helium implantations in tungsten:molecular dynamics simulations and experiments[J]. Journal of Nuclear Materials, 2016, 470:44-54. DOI:10.1016/j.jnucmat.2015.12.017.17 安泰岩, 范红玉, 王研, 等. 辐照温度对钨材料表面微结构的影响[J]. 核技术, 2014, 37(9):090201. DOI:10.11889/j.0253-3219.2014.hjs.37.090201.AN Taiyan, FAN Hongyu, WANG Yan, et al. Influence of irradiation temperature on the surface damage of tungsten[J]. Nuclear Techniques, 2014, 37(9):090201. DOI:10.11889/j.0253-3219.2014.hjs.37.090201. |