1 江绵恒, 徐洪杰, 戴志敏. 未来先进核裂变能——TMSR 核能系统[J]. 中国科学院院刊, 2012, 27(3):366-374. DOI:10.3969/j.issn.1000-3045.2012.03.016. JIANG Mianheng, XU Hongjie, DAI Zhimin. Advanced fission energy program-TMSR nuclear energy system[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(3):366-374. DOI:10.3969/j.issn.1000-3045.2012.03.016. 2 Leblanc D. Too good to leave on the shelf[J]. Mechanical Engineering, 2010, 132(5):28. 3 Hargraves R, Moir R. Liquid fluoride thorium reactors:an old idea in nuclear power gets reexamined[J]. American Scientist, 2010, 98(4):304-313. DOI:10.1511/2010.85. 304. 4 Ho M, Yeoh G, Braoudakis G. Molten salt reactors:materials and processes for energy:communicating current research and technological developments[R]. Spain:Formatex Research Centre, 2013. 5 Nuclear Energy Research Advisory Committee (NERAC) and the Generation IV International Forum (GIF). A technology roadmap for generation IV nuclear energy systems[R]. GIF-002-00, 2002. 6 OECD/NEA. IAEA uranium 2016:resources, production and demand[M]. French:Organisation for Economic Co-operation and Development Publishing, 2016. DOI:10.1787/uranium-2016-en. 7 Serp J, Allibert M, Beneš O, et al. The molten salt reactor (MSR) in generation IV:overview and perspectives[J]. Progress in Nuclear Energy, 2014, 77:308-319. DOI:10.1016/j.pnucene.2014.02.014. 8 Shimazu Y. Current situation of MSR development in Japan[EB/OL]. 2011. http://www.torioverde.net/files/CurrentMSRJapan.pdf. 9 Ignatiev V, Feynberg O, Gnidoi I, et al. Progress in development of Li, Be, Na/F molten salt actinide recycler & transmuter concept[C]. Proceedings of ICAPP, Nice, France, 2007:13-18. 10 Rubiolo P, Heuer D, Merle-Lucotte E, et al. Overview and perspectives of the molten salt fast reactor (MSFR) concept[C]. Proceedings of the International Conference on Molten Salts in Nuclear Technology (CMSNT), Mumbai, India, 2013. 11 Forsberg C W, Peterson P F, Pickard P S. Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity[J]. Nuclear Technology, 2003, 144(3):289-302. DOI:10.13182/NT03-1. 12 蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统[J]. 物理, 2016, 45(9):578-590. DOI:10.7693/wl20160904. CAI Xiangzhou, DAI Zhimin, XU Hongjie. Thorium molten salt reactor nuclear energy system[J]. Physics, 2016, 45(9):578-590. DOI:10.7693/wl20160904. 13 ORNL. SCALE:a comprehensive modeling and simulation suite for nuclear safety analysis and design[R]. ORNL/TM-2005/39, Version 6.1. Oak Ridge, TN, USA:Oak Ridge National Laboratory, 2011. 14 Powers J J, Worrall A, Gehin J C, et al. Reactor physics analysis of thorium fuel cycles using molten salt reactors[J]. Transactions of the American Nuclear Society, 2013, 109:1457. 15 Sheu R, Chang C, Chao C, et al. Depletion analysis on long-term operation of the conceptual molten salt actinide recycler & transmuter (MOSART) by using a special sequence based on SCALE6/TRITON[J]. Annals of Nuclear Energy, 2013, 53:1-8. DOI:10.1016/j.anucene.2012.10.017. 16 Zou C, Cai X, Jiang D, et al. Optimization of temperature coefficient and breeding ratio for a graphite-moderated molten salt reactor[J]. Nuclear Engineering and Design, 2015, 281:114-120. DOI:10.1016/j.nucengdes.2014.11. 022. 17 Yu C, Li X, Cai X, et al. Analysis of minor actinides transmutation for a molten salt fast reactor[J]. Annals of Nuclear Energy, 2015, 85:597-604. DOI:10.1016/j.anucene.2015.06.014. 18 Yu C, Li X, Cai X, et al. Minor actinide incineration and Th-U breeding in a small FLiNaK molten salt fast reactor[J]. Annals of Nuclear Energy, 2017, 99:335-344. DOI:10.1016/j.anucene.2016.09.025. 19 李光超, 邹杨, 余呈刚, 等. 基于熔盐快堆的模型优化与 Th-U 增殖性能研究[J]. 核技术, 2017, 40(2):020603. DOI:10.11889/j.0253-3219.2017.hjs.40.020603. LI Guangchao, ZOU Yang, YU Chenggang, et al. Model optimization and analysis of Th-U breeding based on MSFR[J]. Nuclear Techniques, 2017, 40(2):020603. DOI:10.11889/j.0253-3219.2017.hjs.40.020603. 20 Robertson R C. Conceptual design study of a single-fluid molten salt breeder reactor[R]. ORNL-4541, Oak Ridge, TN, USA:Oak Ridge National Laboratory, 1971. 21 Frima L L W. Burnup in a molten salt fast reactor[D]. Netherlands:Delft University of Technology, 2013. 22 Perry A, Bauman H. Reactor physics and fuel-cycle analyses[J]. Nuclear Technology, 1970, 8(2):208-219. |