1 宋杰鲲. 我国二氧化碳排放量的影响因素及减排对策分析[J]. 价格理论与实践, 2010, 30(1): 37-38.SONG Jiekun. The influence factors of carbon dioxide emissions of our country and the analysis of reducing countermeasures[J]. Theory and Practice, 2010, 30(1): 37-38. 2 Yamasaki S. Evaluation of thermal conductivity of hyperstoichiometric UO2+x by molecular dynamics simulation[J]. International Journal of Thermophysics, 2007, 28(2): 661-673. DOI: 10.1007/s10765-007-0170-6. 3 Inoue M. Thermal conductivity of uranium-plutonium oxide fuel for fast reactors[J]. Journal of Nuclear Materials, 2000, 282(2-3): 186-195. DOI: 10.1016/S0022-3115(00)00407-4. 4 Szpunar B, Szpunar J A. Thermal conductivity of uranium nitride and carbide[J]. International Journal of Nuclear Energy, 2014, 71(1): 152-159. DOI: 10.1155/2014/178360. 5 Vigier N, Den Auwer C, Fillaux C, et al. New data on the structure of uranium monocarbide[J]. Chemistry of Materials, 2008, 20(9): 3199-3204. DOI: 10.1021/cm8001783. 6 仇婷婷, 彭佳, 何淑华, 等. 稀土氟化物在硝酸中溶解性质的研究[J]. 核技术, 2015, 38(11): 110304. DOI: 10.11889/j.0253-3219.2015.hjs.38.110304.QIU Tingting, PENG Jia, HE Shuhua, et al. Solubility of rare earth fluorides in nitric acid[J]. Nuclear Techniques, 2015, 38(11): 110304. DOI: 10.11889/j.0253-3219.2015. hjs.38.110304. 7 Zhao H, Zhu D, Chaudri K S, et al. Preliminary transient thermal-hydraulic analysis for new coated UN and UC fuel options in SCWR[J]. Progress in Nuclear Energy, 2014, 71(1): 152-159. DOI: 10.1016/j.pnucene.2013.11. 008. 8 孙吉昌, 宋殿武, 杨有清. 碳化铀的制备和分析[J]. 中国核科技报告, 1987, 2(0): 646-655.SUN Jichang, SONG Dianwu, YANG Youqing. Preparation and analysis of uranium carbides[J]. China Nuclear Science and Technology Report, 1987, 2(0): 646-655. 9 Reiche M H, Vogel S C. In situ synthesis and characterization of uranium carbide using high[J]. Journal of Nuclear Materials, 2016, 471(1): 308-316. DOI: 10.1016/j.jnucmat.2015.12.044. 10 Raveu G. Experimental study of UC polycrystals in the prospect of improving the as-fabricated sample purity[J]. Nuclear Instruments and Methods in Physics Research B, 2014, 314(1): 72-76. DOI: 10.1016/j.nimb.2014.09.007. 11 郭航旭, 李飒, 秦芝. 溶胶凝胶法制备碳化铀小球[C]. 第三届全囯核化学与放射化学青年学术研讨会, 南宁, 2015.GUO Hangxu, LI Sa, QIN Zhi. Preparation of uranium carbide pellets by sol-gel method[C]. 3rd National Youth Academic Symposiums on Nuclear and Radiochemistry, Nanning, 2015. 12 Tagawa H, Fujii K. Formation of U2C3 in the reaction of UC2 with UO2[J]. Journal of Nuclear Materials, 1971, 39(1): 109-114. DOI: 10.1016/0022-3115(71)90189-9. 13 Hansen M, Anderko K, Salzberg H W. Constitution of binary alloys[J]. Journal of the Electrochemical Society, 1958, 105(12): 260C-261C. DOI: 10.1149/1.2428700. 14 Inoue T, Horiki M, Matsui H, et al. Deposition of U2C3 in neutron irradiated UC+UC2[J]. Journal of Nuclear Materials, 1978, 71(2): 372-374. DOI: 10.1016/0022-3115(78)90438-5. 15 Elliott R P. McGraw-hill series in materials science and engineering[M]. New York: McGraw Hill, 1965. 16 Storms E K. Uranium-carbon and plutonium-carbon systems[R]. Los Alamos: Los Alamos Scientific Laboratory, 1969. DOI: 10.2172/4815047. 17 Raj B, Vijayalakshmi M, Rao P R V, et al. Challenges in materials research for sustainable nuclear energy[J]. Materials Research Society Bulletin, 2008, 33(4): 327-337. 18 Holleck H, Kleykamp H. Gmelin handbook of inorganic chemistry[G]. Berlin: Springer-Verlag, 1987. 19 Eloirdi R, Fuchs A J, Griveau J C, et al. Evidence for persistent spin fluctuations in uranium sesquicarbide[J]. Physical Review B, 2013, 87(21): 214414. DOI: 10.1103/PhysRevB.87.214414. 20 Bober M, Singer J, Wagner K. Bestimmung der optischen konstanten von geschmolzenen kernbrennstoffen[J]. Journal of Nuclear Materials, 1984, 124(1): 120-128. DOI: 10.1016/0022-3115(84)90016-3. 21 De Coninck R, Van Lierde W, Gijs A. Uranium carbide: thermal diffusivity, thermal conductivity and spectral emissivity at high temperatures[J]. Journal of Nuclear Materials, 1975, 57(1): 69-76. DOI: 10.1016/0022-3115(75)90179-8. 22 Grossman L N. High-temperature thermophysical properties of uranium monocarbide[J]. Journal of the American Ceramic Society, 1963, 46(6): 264-267. DOI: 10.1111/j.1151-2916.1963.tb11723.x. 23 Okamoto H. CU (carbon-uranium)[J]. Journal of Phase Equilibria and Diffusion, 2005, 26(6): 642-642. DOI: 10.1007/s11669-005-0016-5. 24 Benz R, Hoffman C G, Rupert G N. Some phase equilibria in the thorium-nitrogen system[J]. Journal of the American Chemical Society, 1967, 89(2): 191-197. 25 Preusser T. Modeling of carbide fuel rods[J]. Nuclear Technology, 1982, 57(3): 343-371. 26 Holley C, Rand M H, Storms E K. The chemical thermodynamics of actinide elements and compounds Part 6: the actinide carbides[M]. Vienna: Intl Atomic Energy Agency, 1985. 27 Sheth A, Tetenbaum M, Leibowitz L. Vapor pressures of UC and (U0.8Pu0.2)C at extremely high temperatures[J]. Transactions of the American Nuclear Society, 1975, 22: 271-275. 28 Rand M H. Thermodynamics of nuclear materials[J]. Atomic Energy Review, 1975, 13(1): 145-151. 29 Olsen J S, Gerward L, Benedict U, et al. High-pressure structural studies of UC by v-ray diffraction and synchrotron radiation[J]. Journal of the Less Common Metals, 1986, 121: 445-453. DOI: 10.1016/0022- 5088(86)90561-8. 30 Chang R. A diffusionless UC2 (cubic) to UC2 (tetragonal) transformation[J]. Acta Crystallographica, 1961, 14(10): 1097-1098. DOI: 10.1107/S0365110X61003223. 31 Chevalier P Y, Fischer E. Thermodynamic modelling of the C-U and B-U binary systems[J]. Journal of Nuclear Materials, 2001, 288(2): 100-129. DOI: 10.1016/S0022-3115(00)00713-3. 32 Shi H L, Zhang P. Electronic structures and mechanical properties of uranium monocarbide form first-principles LDA+U and GGA+U calculations[J]. Physics Letters A, 2009, 373(39): 3577-3581. DOI: 10.1016/j.physleta. 2009.07.074. 33 Shi H L, Zhang P, Li S. First-principles study of UC2 and U2C3[J]. Journal of Nuclear Materials, 2010, 369(2): 218-222. DOI: 10.1016/j.jnucmat.2009.11.009. 34 Austin A E. Carbon positions in uranium carbides[J]. Acta Crystallographica, 1959, 12(2): 159-161. DOI: 10.1107/S0365110X59000445. 35 Chartier A, Van Brutzel L. Modeling of point defects and rare gas incorporation in uranium mono-carbide[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 255(1): 146-150. DOI: 10.1016/j.nimb.2006.11. 017. 36 Wang X, Andrews L, Ma D, et al. Infrared spectra and quantum chemical calculations of the uranium-carbon molecules UC, CUC, UCH, and U(CC)2[J]. Journal of Chemical Physics, 2011, 134(24): 244313. DOI: 10.1021/ja102475t. 37 Sandenaw T A. Evidence for order-disorder in PuC0.80 at low temperatures through specific-heat measurements[J]. Journal of Nuclear Materials, 1975, 57(2): 145-150. DOI: 10.1016/0022-3115(75)90254-8. 38 Matzke H. Science of advanced LMFBR fuels: a monograph on solid state physics, chemistry and technology of carbides, nitrides and carbonitrides of uranium and plutonium[M]. Amsterdam: North Holland, 1986. 39 Routbort J L. Adiabatic elastic constants of uranium monocarbide[J]. Journal of Nuclear Materials, 1971, 40(1): 17-26. DOI: 10.1016/0022-3115(71)90112-7. 40 Tokar M. Compressive creep and hot hardness of U-Pu carbides[J]. Journal of the American Ceramic Society, 1973, 56(4): 173-177. DOI: 10.1111/j.1151-2916.1973. tb12448.x. 41 Seltzer M S, Wright T R, Moak D P. Creep behavior of uranium carbide-based alloys[J]. Journal of the American Ceramic Society, 1975, 58(3-4): 138-142. DOI: 10.1111/j.1151-2916.1975.tb19577.x. 42 Yamamoto E, Haga Y, Inada Y, et al. De Haas-van alphen effect and Fermi surfaces in UC[J]. Journal of the Physical Society of Japan, 1999, 68(12): 3953-3959. DOI: 10.1143/JPSJ.68.3953. 43 Freyss M. First-principles study of uranium carbide: accommodation of point defects and of helium, xenon, and oxygen impurities[J]. Physical Review B, 2010, 81(1): 014101. DOI: 10.1103/PhysRevB.81.014101. 44 Ducher R, Dubourg R, Barrachin M. First-principles study of defect behavior in irradiated uranium monocarbide[J]. Physical Review B, 2011, 83(10): 104107. DOI: 10.1103/PhysRevB.83.104107. 45 Eckle M, Gouder T. Photoemission study of UNxOy and UxCy in thin films[J]. Journal of Alloys and Compounds, 2004, 374(1): 261-264. DOI: 10.1016/j.jallcom.2003.11. 121. 46 Eyre B L, Sole M J. On the formation and behaviour of point defect clusters in neutron irradiated uranium carbide[J]. Journal of Nuclear Materials, 1966, 18(3): 314-322. DOI: 10.1016/0022-3115(66)90172-3. 47 Brucklacher D, Dienst W. Creep behavior of ceramic nuclear fuels under neutron irradiation[J]. Journal of Nuclear Materials, 1972, 42(3): 285-296. DOI: 10.1016/0022-3115(72)90079-7. 48 Schüle W, Spindler P. Properties of vacancies in uranium carbide[J]. Journal of Nuclear Materials, 1969, 32(1): 20-29. DOI: 10.1016/0022-3115(69)90138-X. 49 Matsui H, Horiki M, Kirihara T. Irradiation of uranium carbides in JMTR[J]. Journal of Nuclear Science and Technology, 1981, 18(12): 922-929. DOI: 10.3327/jnst. 18.922. 50 Höh A, Matzke H. Fission-enhanced self-diffusion of uranium in UO2 and UC[J]. Journal of Nuclear Materials, 1973, 48(2): 157-164. DOI: 10.1016/0022-3115(73) 90150-5. 51 Tetenbaum M, Hunt P D. High-temperature thermodynamic properties of hypo- and hyper-stoichiometric uranium carbides[J]. Journal of Nuclear Materials, 1971, 40(1): 104-112. DOI: 10.1016/0022-3115(71)90121-8. 52 Routbort J L, Matzke H. Grain-boundary diffusion of U in pure and doped uranium carbides with different C/U ratios[J]. Journal of the American Ceramic Society, 1975, 58(3-4): 81-84. DOI: 10.1111/j.1151-2916.1975. tb19561.x. 53 Matsui H, Kato T, Yagi K, et al. Quenched-in vacancies in single crystalline uranium monocarbide (UC)[J]. Radiation Effects and Defects in Solids, 1989, 108(1): 115-124. DOI: 10.1080/10420158908217874. 54 Matzke H, Politis C. Self-diffusion of uranium in uranium dicarbide UC2[J]. Solid State Communications, 1973, 12(5): 401-404. DOI: 10.1016/0038-1098(73)90782-5. 55 Bévillon E, Ducher R, Barrachin M, et al. Investigation of the diffusion of atomic fission products in UC by density functional calculations[J]. Journal of Nuclear Materials, 2013, 434(1): 240-247. DOI: 10.1016/j.jnucmat.2012.11. 030. 56 Song F L, Yang X W, Li X L, et al. The behavior of cesium adsorption on zirconyl pyrophosphate[J]. Nuclear Science and Techniques, 2016, 27(3): 60. DOI: 10.1007/s41365-016-0054-1. 57 Harrison J W. The irradiation-induced swelling of uranium carbide[J]. Journal of Nuclear Materials, 1969, 30(3): 319-323. DOI: 10.1016/0022-3115(69)90248-7. 58 Finlay M R, Hofman G L, Snelgrove J L. Irradiation behaviour of uranium silicide compounds[J]. Journal of Nuclear Materials, 2004, 325(2): 118-128. DOI: 10.1016/j.jnucmat.2003.11.009. 59 Bévillon E, Ducher R, Barrachin M. First-principles study of the stability of fission products in uranium monocarbide[J]. Journal of Nuclear Materials, 2012, 426(1): 189-197. DOI: 10.1016/j.jnucmat.2012.03.014. 60 Middleburgh S C, Burr P A, King D J M, et al. Structural stability and fission product behaviour in U3Si[J]. Journal of Nuclear Materials, 2015, 466(1): 739-744. DOI: 10.1016/j.jnucmat.2015.04.052. 61 Matthews C. Fission gas bubble behavior in uranium carbide[D]. Oregon State: Oregon State University, 2015. 62 Felix F W, Seelig H. New experimental possibilities in the study of diffusion of noble gases in fissionable material[J]. Nukleonik, 1967, 9(1): 389-392. 63 Matzke H. Application of “channeling” techniques to fission gas release studies[J]. Journal of Nuclear Materials, 1969, 30(1-2): 110-121. DOI: 10.1016/0022-3115(69) 90173-1. 64 Zumwalt L R, Gethard P E, Anderson E E. Fission-product release from monogranular UC2 particles[J]. Nuclear Science and Engineering, 1965, 21(1): 1-12. 65 Shaked H. Diffusion of xenon in uranium monocarbide[D]. California: University of California, 1962. DOI: 10.2172/4694056. |