1 Forsberg C W, Peterson P F, Pickard P S. Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity[J]. Nuclear Technology, 2003, 144(3): 289-302. DOI: 10.13182/NT03-1. 2 De Zwaan S, Boer B, Lathouwers D, et al. Static design of a liquid-salt-cooled pebble bed reactor (LSPBR)[J]. Annals of Nuclear Energy, 2007, 34(1): 83-92. DOI: 10.1016/j.anucene.2006.11.008. 3 Andreades A T C, Choi J K, Chong A Y K, et al. Technical description of the‘Mark 1’pebble-bed fluoride-salt-cooled high-temperature reactor (PB-FHR) power plant[D]. Berkeley: University of California, 2014. 4 Serp J, Allibert M, Beneš O, et al. The molten salt reactor (MSR) in generation IV: overview and perspectives[J]. Progress in Nuclear Energy, 2014, 77: 308-319. DOI: 10.1016/j.pnucene.2014.02.014. 5 Griveau A. Modeling and transient analysis for the pebble bed advanced high temperature reactor (PB-AHTR)[D]. Berkeley: Department of Nuclear Engineering, University of California, 2007. 6 牛强, 宋士雄, 魏泉, 等. 熔盐冷却球床堆热通道热工水力特性数值分析[J]. 核技术, 2014, 37(7): 070602. DOI: 10.11889/j.0253-3219.2014.hjs.37.070602. NIU Qiang, SONG Shixiong, WEI Quan, et al. Thermal-hydraulics numerical analyses of pebble bed advanced high temperature reactor hot channel[J]. Nuclear Techniques, 2014, 37(7): 070602. DOI: 10.11889/j.0253-3219.2014.hjs.37.070602. 7 Wang C, Xiao Y, Zhou J, et al. Computational fluid dynamics analysis of a fluoride salt-cooled pebble-bed test reactor[J]. Nuclearence & Engineering, 2014, 178(1): 86-102. DOI: 10.13182/NSE13-60. 8 Ge J, Wang C, Xiao Y, et al. Thermal-hydraulic analysis of a fluoride-salt-cooled pebble-bed reactor with CFD methodology[J]. Progress in Nuclear Energy, 2016, 91: 83-96. DOI: 10.1016/j.pnucene.2016.01.011. 9 Kirk D, Hwu W. Programming massively parallel processors[M]. Boston: Morgan Kaufmann, 2010. 10 Bailey P, Myre J, Walsh S D C, et al. Accelerating lattice boltzmann fluid flow simulations using graphics processors[C]. Proceedings of the International Conference on Parallel Processing, International Conference on Cultural Policy, Vienna, Austria, 2009: 550-557. 11 Boyd W R, Smith K, Forget B, et al. A massively parallel method of characteristic neutral particle transport code for GPUs[M]. La Grange Park, United States: American Nuclear Society, 2013. 12 De Lemos M J, Pedras M H. Recent mathematical models for turbulent flow in saturated rigid porous media[J]. Journal of Fluids Engineering, 2001, 123(4): 935-940. DOI: 10.1115/1.1413243. 13 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2003.TAO Wenquan. Numerical heat transfer[M]. Xi'an: Xi'an Jiaotong University Press, 2003. 14 Nakayama A, Kuwahara F. A macroscopic turbulence model for flow in a porous medium[J]. Journal of Fluids Engineering, 1999, 121(2): 427-433. DOI: 10.1115/1.2822227. 15 Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94. 16 Quintard M, Kaviany M, Whitaker S. Two-medium treatment of heat transfer in porous media: numerical results for effective properties[J]. Advances in Water Resources, 1997, 20(2): 77-94. DOI: 10.1016/S0309-1708(96)00024-3. 17 Kuwahara F, Nakayama A. Numerical modelling of non-Darcy convective flow in a porous medium[C]. Heat Transfer Conference, Kyongju, Korea, 1998: 411-416. 18 Wakao N, Kaguei S, Funazkri T. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of nusselt numbers[J]. Chemical Engineering Science, 1979, 34(3): 325-336. DOI: 10.1016/0009-2509(79)85064-2. 19 Guo B, Yu A, Wright B, et al. Simulation of turbulent flow in a packed bed[J]. Chemical Engineering & Technology, 2006, 29(5): 596-603. DOI: 10.1002/ceat. 200500292. 20 Kuzavkov N. Heat transport and afterheat removal for gas cooled reactors under accident conditions[D]. Vienna: International Atomic Energy Agency, 2000. 21 Hestenes M R, Stiefel E. Methods of conjugate gradients for solving linear systems[J]. Journal of Research of the National Bureau of Standards, 1952, 49(6): 409-436. DOI: 10.6028/jres.049.044. 22 Vorst H A V D. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J[J]. Siam Journal on Scientific & Statistical Computing, 1992, 13(2): 631-644. DOI: 10.1137/0913035. 23 Zhang J F, Zhang L. Efficient CUDA polynomial preconditioned conjugate gradient solver for finite element computation of elasticity problems[J]. Mathematical Problems in Engineering, 2013, (6): 1-12. DOI: 10.1155/2013/398438. 24 Stüben K. A review of algebraic multigrid[J]. Journal of Computational & Applied Mathematics, 2001, 128(1-2): 281-309. DOI: 10.1016/S0377-0427(00)00516-1. 25 Bardet P, An J Y, Franklin J T, et al. The pebble recirculation experiment (PREX) for the AHTR[C]. Proceedings of the Advanced Nuclear Fuel Cycles and Systems (GLOBAL 2007), La Grange Park: American Nuclear Society, 2007: 845-851. |