1 Forsberg C W, Snead L L, Katoh Y. Fluoride-salt-cooled high-temperature reactor (FHR) with silicon-carbide- matrix coated-particle fuel[A]. Transactions of the American Nuclear Society[C]. American Nuclear Society Winter Meeting, San Diego, CA, New York: Academic Press, 2012: 907-910. 2 Greene S R, Gehin J C, Holcomb D E, et al. Pre-conceptual design of a fluoride-salt-cooled small modular advanced high temperature reactor (SmAHTR)[R]. United States: Oak Ridge National Laboratory, 2011. DOI: 10.2172/1008830. 3 Furukawa K, Erbay L B, Aykol A. A study on a symbiotic thorium breeding fuel-cycle: THORIMS-NES through FUJI[J]. Energy Conversion & Management, 2012, 63(6): 51-54. DOI: 10.1016/j.enconman.2012.01.030. 4 He Z, Gao L, Qi W. Molten FLiNaK salt infiltration into degassed nuclear graphite under inert gas pressure[J]. Carbon, 2015, 84(1): 511-518. DOI: 10.1016/j.carbon. 2014.12.044. 5 Jing S, Zhang C, Pu J, et al. 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10[J]. Nuclear Science and Techniques, 2016, 27(3): 66. DOI: 10.1007/s41365-016-0071-0. 6 Haubenreich P N, Engel J R. Experience with the molten-salt reactor experiment[J]. Nuclear Applications & Technology, 1970, 8(2): 118-136. DOI: 10.13182/NT8-2-118. 7 Bodel W. The relationship between microstructure and young's modulus of nuclear graphite[D]. UK: The University of Manchester, 2013. 8 Tsang D K L, Marsden B J. Constitutive material model for the prediction of stresses in irradiated anisotropic graphite components[J]. Journal of Nuclear Materials, 2008, 381(1-2): 129-136. DOI: 10.1016/j.jnucmat.2008. 07.025. 9 Tsang D K L, Marsden B J. The development of a stress analysis code for nuclear graphite components in gras-cooled reactors[J]. Journal of Nuclear Materials, 2006, 350(3): 208-220. DOI: 10.1016/j.jnucmat.2006.01. 015. 10 Lawn B R. Fracture of brittle solids[M]. 2nd ed. Cambridge: Cambridge University Press, 1993. DOI: 10.1017/CBO9780511623127. 11 Tsang D K L, Marsden B J. Effects of dimensional change strain in nuclear graphite component stress analysis[J]. Nuclear Engineering & Design, 2007, 237(9): 897-904. DOI: 10.1016/j.nucengdes.2006.01.015. 12 Tsang D K L, Marsden B J, Vreeling J A, et al. Analyses of a restrained growth graphite irradiation creep experiment[J]. Nuclear Engineering & Design, 2008, 238(11): 3026-3030. DOI: 10.1016/j.nucengdes.2007. 12.017. 13 Luyken L. Using intercalation to simulate irradiation damage of nuclear graphite[D]. UK: The University of Manchester, 2012. 14 Mironov B E, Freeman H M, Brown A P, et al. Electron irradiation of nuclear graphite studied by transmission electron microscopy and electron energy loss spectroscopy[J]. Carbon, 2015, 83: 106-117. DOI: 10.1016/j.carbon.2014.11.019. 15 Hall G, Marsden B J, Smart J, et al. Finite-element modelling of nuclear-grade graphite[J]. Nuclear Energy, 2002, 41(1): 53-62. DOI: 10.1680/nuen.41.1.53.39011. 16 Inglis C E. Stress distribution in a rectangular plate having two opposing edges sheared in opposite directions[J]. Proceedings of the Royal Society of London, 1923, 103(723): 598-610. DOI: 10.1098/rspa.1923.0081. |