1 US Department of Energy. A technology roadmap for generation IV nuclear energy systems[R]. USA: Nuclear Energy Research Advisory Committee and the Generation IV International Forum, 2002: GIF-002-00.2 Bettis E S, Cottrell W B, Mann E R, et al. The aircraft reactor experiment[J]. Nuclear Science and Engineering, 1957, 2(6): 841-853.3 Haubenreich P N, Eengel J R. Experience with the molten-salt reactor experiment[J]. Nuclear Applications and Technology, 1970, 8(2): 118-136.4 Robertson R C. Conceptual design study of a single-fluid molten-salt breeder reactor[R]. ORNL-4541, UC-80, Tennessee, USA: Reactor Technology, 1971.5 Serp J, Allibert M, Benes O, et al. The molten salt reactor (MSR) in generation IV: overview and perspectives[J]. Progress in Nuclear Energy, 2014, 77(1): 308-319. DOI: 10.1016/j.pnucene.2014.02.014.6 Nuttin A, Heuer D, Billebaud A, et al. Potential of thorium molten salt reactor: detailed calculations and concept evolutions view of a large nuclear energy production[J]. Progress in Nuclear Energy, 2005, 46(1): 77-99. DOI: 10.1016/j.pnucene.2004.11.001.7 Mathieu L, Heuer D, Merle-Lucotte E, et al. Possible configurations for the thorium molten salt reactor and advantages of the fast nonmoderated version[J]. Nuclear Science and Engineering, 2009, 161(1): 78-89. DOI: 10.13182/NSE07-49.8 Merle-Lucotte E, Heuer D, Allibert M, et al. Minimizing the fissile inventory of the molten salt fast reactor[R]. Hilton Head Island, South Carolina, USA: Advances in Nuclear Fuel Management IV (ANFM 2009), April 12-15, 2009.9 Heuer D, Merle-Lucotte E, Allibert M, et al. Towards the thorium fuel cycle with molten salt fast reactors[J]. Annals of Nuclear Energy, 2014, 64(1): 421-429. DOI: 10.1016/j.anucene.2013.08.002.10 Koshi M, Takahisa Y. Three-region core design for 200-MW (electric) molten-salt reactor with thorium-uranium fuel[J]. Nuclear Technology, 2007, 158(3): 348-357.11 Koshi M, Takahisa Y, Ritsuo Y. Self-sustaining core design for 200 MWe molten-salt reactor with thorium-uranium fuel: FUJI-U3-(0)[R]. International Workshop on Thorium Utilization for Sustainable Development of Nuclear Energy (TU2007), Beijing, China: Tsinghua University, 2007.12 Ignatiev V, Feynberg O. Progress in development of Li, Be, Na/F molten salt actinide recycler & transmuter concept[R]. France: Proceedings of ICAPP, 2007: 7548.13 Ignatiev V, Feynberg O, Gnidoi I, et al. Molten salt actinide recycler and transforming system without and with Th-U support: fuel cycle flexibility and key material properties[J]. Annals of Nuclear Energy, 2014, 64(1): 408-420. DOI: 10.1016/j.anucene.2013.09.004.14 江绵恒, 徐洪杰, 戴志敏. 未来先进核裂变能——TMSR核能系统[J]. 中国科学院院刊, 2012, 27(3): 366-374. DOI: 10.3969/j.issn.1000-3045.2012.03.016.JIANG Mianheng, XU Hongjie, DAI Zhimin. Advanced nuclear fission energy-TMSR nuclear energy systems[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(3): 366-374. DOI: 10.3969/j.issn.1000-3045.2012.03.016.15 Zou C Y, Cai X Z, Jiang D Z, et al. Optimization of temperature coefficient and breeding ratio for a graphite-moderated molten salt reactor[J]. Nuclear Engineering and Design, 2015, 281(1): 114-120. DOI: 10.1016/j.nucengdes.2014.11.022.16 吴攀, 蔡翔舟, 余呈刚, 等. 氢化锆慢化熔盐堆钍铀转换性能初步分析[J]. 核技术, 2015, 39(5): 050605. DOI: 10.11889/j.0253-3219.2016.hjs.39.050605.WU Pan, CAI Xiangzhou, YU Chenggang, et al. Preliminary analysis of Th-U conversion performance in a ZrH-moderated molten salt reactor[J]. Nuclear Techniques, 2015, 39(5): 050605. DOI: 10.11889/j.0253-3219.2016. hjs.39.050605.17 杨昆, 陈金根, 蔡翔舟. 基于中子平衡研究增殖燃料实现CANDLE模式的最优配置[J]. 核技术, 2016, 39(6): 060601. DOI: 10.11889/j.0253-3219.2016.hjs.39.060601.YANG Kun, CHEN Jingen, CAI Xiangzhou. Using the neutron balance method to access the feed fuel requirements for CANDLE[J]. Nuclear Techniques, 2016, 39(6): 060601. DOI: 10.11889/j.0253-3219.2016.hjs.39. 060601.18 SCALE: a comprehensive modeling and simulation suite for nuclear safety analysis and design[R]. ORNL/TM-2005/39, Version6.1, Vol.I-III. Oak Ridge, Tennessee: Oak Ridge National Laboratory, 2011.19 Yu C G, Li X X, Cai X Z, et al. Analysis of minor actinides transmutation for a molten salt fast reactor[J]. Annals of Nuclear Energy, 2015, 85(1): 597-604. DOI: 10.1016/j.anucene.2015.06.014.20 Yu C G, Li X X, Cai X Z, et al. Minor actinide incineration and Th-U breeding in a small FLiNaK molten salt fast reactor[J]. Annals of Nuclear Energy, 2017, 99(1): 335-344. DOI: 10.1016/j.anucene.2016.09.025. |