1 Wacharasindhu T, Kwon J W, Meier D E, et al. Radioisotope microbattery based on liquid semiconductor[J]. Applied Physics Letters, 2009, 95(1):4103. DOI:10.1063/1.31605422 San H, Yao S, Wang X, et al. Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery[J]. Applied Radiation and Isotopes, 2013, 80:17-22. DOI:10.1016/j.apradiso.2013.05.0103 Eiting C J, Krishnamoorthy V, Rodgers S, et al. Demonstration of a radiation resistant, high efficiency SiC betavoltaic[J]. Applied Physics Letters, 2006, 88(6):4101. DOI:10.1063/1.21724114 Popa-Simil L. Nanotube potential future in nuclear power[C]. MRS Proceedings, Cambridge University Press, 2008, 1081:P15-15. DOI:10.1557/PROC-1081-P15-155 Popa-Simil L. Direct energy conversion nano-hybrid fuel[C]. MRS Proceedings, Cambridge University Press, 2008, 1104:NN07-20. DOI:10.1557/PROC-1104-NN07-206 Krasheninnikov A V, Nordlund K, Keinonen J. Production of defects in supported carbon nanotubes under ion irradiation[J]. Physical Review B, 2002, 65(16):165423. DOI:10.1103/PhysRevB.65.1654237 Krasheninnikov A V, Nordlund K, Sirviö M, et al. Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes[J]. Physical Review B, 2001, 63(24):245405. DOI:10.1103/PhysRevB.63.2454058 Krasheninnikov A V, Nordlund K. Channeling of heavy ions through multi-walled carbon nanotubes[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2005, 228(1):21-25. DOI:10.1016/j.nimb.2004.10.0169 Xu Z J, Zhang W, Zhu Z, et al. Molecular dynamics study of damage production in single-walled carbon nanotubes irradiated by various ion species[J]. Nanotechnology, 2009,20(12):125706. DOI:10.1088/0957-4484/20/12/12570610 Xu Z J, Zhang W, Zhu Z, et al. Effects of tube diameter and chirality on the stability of single-walled carbon nanotubes under ion irradiation[J]. Journal of Applied Physics, 2009, 106(4):043501. DOI:10.1063/1.319478411 Bao J, Tie C, Xu Z, et al. A facile method for creating an array of metal-filled carbon nanotubes[J]. Advanced Materials, 2002, 14(20):1483-1486. DOI:10.1002/1521-4095(20021016)14:20<1483::AID-ADMA1483>3.0.CO;2-612 Che G, Lakshmi B B, Martin C R, et al. Metal-nanocluster-filled carbon nanotubes:catalytic properties and possible applications in electrochemical energy storage and production[J]. Langmuir, 1999, 15(3):750-758. DOI:10.1021/la980663i13 Rossella F, Soldano C, Bellani V, et al. Metal-filled carbon nanotubes as a novel class of photothermal nanomaterials[J]. Advanced Materials, 2012, 24(18):2453-2458. DOI:10.1002/adma.20110439314 Toh S, Kaneko K, Hayashi Y, et al. Microstructure of metal-filled carbon nanotubes[J]. Journal of Electron Microscopy, 2004, 53(2):149-155. DOI:10.1093/jmicro/53.2.14915 Fan X, Dickey E C, Eklund P C, et al. Atomic arrangement of iodine atoms inside single-walled carbon nanotubes[J]. Physical Review Letters, 2000, 84(20):4621-4624. DOI:10.1103/PhysRevLett.84.462116 Brenner D W, Shenderova O A, Harrison J A, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[J]. Journal of Physics:Condensed Matter, 2002, 14(4):783-802. DOI:10.1088/0953-8984/14/4/31217 Ziegler J F, Biersack J P. The stopping and range of ions in matter[M]. US:Springer, 1985. DOI:10.1007/978-1-4615-8103-1_318 Nordlund K, Keinonen J, Mattila T. Formation of ion irradiation induced small-scale defects on graphite surfaces[J]. Physical Review Letters, 1996, 77(4):699-702. DOI:10.1103/PhysRevLett.77.69919 Pomoell J, Krasheninnikov A V, Nordlund K, et al. Stopping of energetic ions in carbon nanotubes[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2003, 206:18-21. DOI:10.1016/S0168-583X(03)00703-120 Krasheninnikov A V, Nordlund K. Irradiation effects in carbon nanotubes[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2004, 216:355-366. DOI:10.1016/j.nimb.2003.11.06121 Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B, 1986, 33(12):7983-7991. DOI:10.1103/PhysRevB.33.798322 Jalili S, Mochani C, Akhavan M, et al. Molecular dynamics simulation of a graphite-supported copper nanocluster:thermodynamic properties and gas adsorption[J]. Molecular Physics, 2012, 110(5):267-276. DOI:10.1080/00268976.2011.64095323 Krasheninnikov A V, Banhart F. Engineering of nanostructured carbon materials with electron or ion beams[J]. Nature Materials, 2007, 6(10):723-733. DOI:10.1038/nmat199624 Nordlund K, Averback R S. Point defect movement and annealing in collision cascades[J]. Physical Review B, 1997, 56(5):2421-2431. DOI:10.1103/PhysRevB.56.2421 |