核技术 ›› 2020, Vol. 43 ›› Issue (2): 20001-020001.doi: 10.11889/j.0253-3219.2020.hjs.43.020001

• 综述 •    下一篇

中国极化电子离子对撞机计划

曹须1,2,常雷3,畅宁波4,陈旭荣1,2,陈卓俊5,崔著钫6,戴凌云5,邓维天7,丁明慧8,龚畅9,桂龙成1,2,10,郭奉坤11,2,韩成栋1,2,何军12,黄虹霞12,黄银13,李德民15,李衡讷16,李民祥1,17,李学潜3,梁羽铁1,2,梁作堂18,刘国明16,刘杰1,2,刘柳明1,2,刘翔17,罗晓峰19,吕准20,马伯强9,马伏1,2,马建平11,2,马余刚21,22,2,冒立军1,2,平加伦12,秦思学24,任航1,2,申国栋1,2,史潮25,宋勤涛15,孙昊26,王恩科16,王凡6,王倩16,王荣1,2,王睿儒1,2,王涛峰27,王伟28,王晓玉15,王晓云29,吴佳俊2,吴兴刚24,肖博文19,肖国青1,2,谢聚军1,2,谢亚平1,2,邢宏喜16,徐瑚珊1,2,许怒1,2,19,徐书生30,鄢文标31,闫文成15,闫新虎32,杨建成1,2,杨一玻11,2,杨智1,2,姚德良5,尹佩林30,詹文龙1,2,张建辉33,张金龙34,张鹏鸣35,张肇西11,2,张振宇36,赵红卫1,2,赵光达9,赵强37,2,赵宇翔1,2,赵政国31,郑亮38,周剑18,周详36,周小蓉31,邹冰松11,2,邹丽平1,2   

  1. 1. 中国科学院近代物理研究所 兰州 730000
    2. 中国科学院大学 北京 100049
    3. 南开大学 天津 300071
    4. 信阳师范学院 信阳 464000
    5. 湖南大学 长沙 410082
    6. 南京大学 南京 210093
    7. 华中科技大学 武汉 430074
    8. European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38123 Villazzano (TN)Italy
    9. 北京大学 物理学院 北京 100871
    10. 湖南师范大学 长沙 410081
    11. 中国科学院理论物理研究所 中国科学院理论物理前沿重点实验室 北京 100190
    12. 南京师范大学 南京 210023
    13. 西南交通大学 成都 610000
    14. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
    15. 郑州大学 物理学院 郑州 450001
    16. 华南师范大学 量子物质研究院 广东省核物质科学与技术重点实验室 广州 510631
    17. 兰州大学 物理科学与技术学院 兰州 730000
    18. 山东大学 粒子物理与粒子辐照教育部重点实验室 青岛 266237
    19. 华中师范大学 夸克与轻子教育部重点实验室和粒子物理研究所 武汉 430079
    20. 东南大学 物理学院 南京 211189
    21. 复旦大学 现代物理研究所 核物理与离子束应用教育部重点实验室 上海 200433
    22. 中国科学院上海应用物理研究所 上海 201800
    23. IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
    24. 重庆大学 物理系 重庆 400044
    25. 南京航空航天大学 核科学与技术系 南京 211106
    26. 大连理工大学 大连 116024
    27. 北京航空航天大学 物理学院 北京 100191
    28. 上海交通大学 上海 200240
    29. 兰州理工大学 兰州 730050
    30. 南京邮电大学 南京 210023
    31. 中国科学技术大学 合肥 230026
    32. 黄山学院 黄山 245021
    33. 北京师范大学 高等量子研究中心 北京 100875
    34. Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
    35. 中山大学 物理与天文学院 珠海 519082
    36. 武汉大学 物理科学与技术学院 武汉 430072
    37. 中国科学院高能物理研究所 中国科学院大科学装置理论中心 北京 100049
    38. 中国地质大学(武汉)数学与物理学院 武汉 430074
  • 收稿日期:2020-01-08 修回日期:2020-01-16 出版日期:2020-02-15 发布日期:2020-02-24
  • 基金资助:
    中国科学院B 类先导科技专项培育项目(XDPB09)

Electron ion collider in China

Xu CAO1,2,Lei CHANG3,Ningbo CHANG4,Xurong CHEN1,2,Zhuojun CHEN5,Zhufang CUI6,Lingyun DAI5,Weitian DENG7,Minghui DING8,Chang GONG9,Longcheng GUI1,2,10,Fengkun GUO11,2,Chengdong HAN1,2,Jun HE12,Hongxia HUANG12,Yin HUANG13,Kaptari L P1,14,Demin LI15,Hengne LI16,Minxiang LI1,17,Xueqian LI3,Yutie LIANG1,2,Zuotang LIANG18,Guoming LIU16,Jie LIU1,2,Liuming LIU1,2,Xiang LIU17,Xiaofeng LUO19,Zhun LYU20,Boqiang MA9,Fu MA1,2,Jianping MA11,2,Yugang MA21,22,2,Lijun MAO1,2,Mezrag C23,Jialun PING12,Sixue QIN24,Hang REN1,2,Roberts C D6,Guodong SHEN1,2,Chao SHI25,Qintao SONG15,Hao SUN26,Enke WANG16,Fan WANG6,Qian WANG16,Rong WANG1,2,Ruiru WANG1,2,Taofeng WANG27,Wei WANG28,Xiaoyu WANG15,Xiaoyun WANG29,Jiajun WU2,Xinggang WU24,Bowen XIAO19,Guoqing XIAO1,2,Jujun XIE1,2,Yaping XIE1,2,Hongxi XING16,Hushan XU1,2,Nu XU1,2,19,Shusheng XU30,Wenbiao YAN31,Wencheng YAN15,Xinhu YAN32,Jiancheng YANG1,2,Yi-Bo YANG11,2,Zhi YANG1,2,Deliang YAO5,Peilin YIN30,Wenlong ZHAN1,2,Jianhui ZHANG33,Jinlong ZHANG34,Pengming ZHANG35,Chao-Hsi CHANG11,2,Zhenyu ZHANG36,Hongwei ZHAO1,2,Kuang-Ta CHAO9,Qiang ZHAO37,2,Yuxiang ZHAO1,2,Zhengguo ZHAO31,Liang ZHENG38,Jian ZHOU18,Xiang ZHOU36,Xiaorong ZHOU31,Bingsong ZOU11,2,Liping ZOU1,2   

  1. 1. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Nankai University, Tianjin 300071, China
    4. Xinyang Normal University, Xinyang 464000, China
    5. Hunan University, Changsha 410082, China
    6. Nanjing University, Nanjing 210093, China
    7. Huazhong University of Science and Technology, Wuhan 430074, China
    8. European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38123 Villazzano (TN)Italy
    9. School of Physics, Peking University, Beijing 100871, China
    10. Hunan Normal University, Changsha 410081, China
    11. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
    12. Nanjing Normal University, Nanjing 210023, China
    13. Southwest Jiaotong University, Chengdu 610000, China
    14. Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
    15. School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
    16. Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510631, China
    17. School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
    18. Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
    19. Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
    20. School of Physics, Southeast University, Nanjing 211189, China
    21. Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
    22. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
    23. IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
    24. Department of Physics, Chongqing University, Chongqing 400044, China
    25. Department of nuclear science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    26. Dalian University of Technology, Dalian 116024, China
    27. School of Physics, Beihang University, Beijing 100191, China
    28. Shanghai Jiao Tong University, Shanghai 200240, China
    29. Lanzhou University of Technology, Lanzhou 730050, China
    30. School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
    31. University of Science and Technology of China, Hefei 230026, China
    32. Huangshan University, Huangshan 245021, China
    33. Center of Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
    34. Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
    35. School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China
    36. School of Physics and Technology, Wuhan University, Wuhan 430072, China
    37. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
    38. School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China
  • Received:2020-01-08 Revised:2020-01-16 Online:2020-02-15 Published:2020-02-24
  • Supported by:
    Key Research Program of Chinese Academy of Sciences(XDPB09)

摘要:

轻子散射实验是探索核子与原子核结构的理想工具。中国电子离子对撞机(Electron Ion Collider in China,EicC)建议书设想在已开建的强流重离子加速器装置(High Intensity heavy ion Accelerator Facility,HIAF)的基础上,升级质子束流为20 GeV的极化束流,并建造2.8~5 GeV极化电子束流,从而实现质心系能量为15~20 GeV的双极化电子-离子对撞。EicC设计的亮度为(2~4)×1033 cm-2?s-1,质子束流极化率达到70%,电子束流极化率达到80%。该装置除了能提供极化轻离子束流(例如:氦-3)外,也可产生非极化重离子束流(碳-12 ~铀-238)。EicC将聚焦核子海夸克部分子结构、原子核物质结构与性质、奇特强子态三个方面的物理研究。高亮度、高精度的对撞机有助于精确地测量核子结构函数并对核子进行三维成像,揭示强相互作用的动力学规律;原子核部分子分布包括核子短程关联以及原子核介质效应同样是该提案的重要科学目标;EicC能区接近重味夸克产生阈值,在研究重味强子谱方面拥有低背景的独特优势,有助于发现研究新的奇特强子态。质子质量起源问题也可以通过重味矢量介子的产生来研究。为了完成上述物理目标,我们将利用最先进的探测器技术建造接近全立体角覆盖的EicC对撞机谱仪。在准备EicC白皮书的过程中,我们得到世界各国专家的支持。EicC的物理与已有的实验和美国即将建设的EIC中的物理项目相互补充。EicC的建成及运行有望引领前沿的中高能核物理研究,使我国在加速器和探测器先进技术等领域实现跨越式发展,为我国核物理与强子物理以及相关科学领域提供大型综合实验平台与人才培养基地。

关键词: 电子离子对撞机, 核子结构, 核子质量, 奇特强子态, 量子色动力学, 螺旋度, 横动量依赖部分子分布, 广义部分子分布, 深度虚康普顿散射, 深度虚介子散射, 能量回收型直线加速器, 极化度, 自旋旋转器, 三维成像

Abstract:

Lepton scattering is an established ideal tool for studying inner structure of microscopic particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High intensity heavy-ion accelerator facility (HIAF) which is currently under construction, together with an additional electron ring. The proposed collider will provide highly polarized electrons (with the polarization ~80%), protons and Helium-3 (both with the polarization ~70%), as well as unpolarized ion beams from carbon to uranium with viable center of mass energy from 15 GeV to 20 GeV and the luminosity of (2~4)×1033 cm-2?s-1. The main foci of the EicC will be the precision measurements of proton structure in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment, in particular, the short range correlation of nucleons and the cold nuclear matter effects; the exotic hadronic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with the cutting-edge technology. During preparation of the document, we have received valuable inputs and help from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and hadron physics as well as accelerator and detector technology in China.

Key words: Electron ion collider, Nucleon structure, Nucleon mass, Exotic hadronic states, Quantum chromodynamics, Helicity, Transverse momentum dependent parton distribution, Generalized Parton Distribution, Deeply virtual compton scattering, Deeply virtual meson production, Energy recovery linac, Polarization, Spin rotator, 3D-tomography

中图分类号: 

  • O571.1