1 Eric D K. Engines of creation:the coming era of nanotechnology[M]. New York:Doubleday Press, 1986. 2 Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature, 1973, 241(105):20-22. DOI:10.1038/physci241020a0. 3 Kuni F M, Shchekin A K, Rusanov A I. Thermodynamics of condensation on soluble nuclei of surface-inactive substances[J]. Colloid Journal of the Russian Academy of Sciences, 1993, 55(2):174-183. 4 Gardea-Torresdey J, Tiemann K, Gamez G, et al. Gold nanoparticles obtained by bio-precipitation from gold (Ⅲ) solutions[J]. Journal of Nanoparticle Research, 1999, 1(3):397-404. DOI:10.1023/A:1010008915465. 5 Dai X, Tan Y, Xu J. Formation of gold nanoparticles in the presence of o-anisidine and the dependence of the structure of poly (o-anisidine) on synthetic conditions[J]. Langmuir, 2002, 18(23):9010-9016. DOI:10.1021/la025926u. 6 ZHONG Ruibo, LIU Yushuang, ZHANG Ping, et al. A facile method to build a proton nanosensor with neutral to basic pH sensitive range[J]. Nuclear Science and Techniques (in China), 2014, 25(4):040503. DOI:10. 13538/j.1001-8042/nst.25.040503. 7 ZHU Dan, LI Min. WANG Lihua, et al. A micro e-DNA sensor for selective detection of dopamine in presence of ascorbic acid[J]. Nuclear Science and Techniques (in China), 2015, 26(6):060504. DOI:10.13538/j.1001-8042/nst.26.060504. 8 Hutter E, Maysinger D. Gold nanoparticles and quantum dots for bioimaging[J]. Microscopy Research and Technique, 2011, 74(7):592-604. DOI:10.1002/jemt. 20928. 9 Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chemical Reviews, 2005, 105(4):1025-1102. DOI:10.1021/cr030063a. 10 Zhu M Q, Wang L Q, Exarhos G J, et al. Thermosensitive gold nanoparticles[J]. Journal of the American Chemical Society, 2004, 126(9):2656-2657. DOI:10.1021/ja038544z. 11 Hainfeld J F, Slatkin D N, Smilowitz H M. The use of gold nanoparticles to enhance radiotherapy in mice[J]. Physics in Medicine and Biology, 2004, 49(18):N309. DOI:10.1088/0031-9155/49/18/N03. 12 Xiao F, Zheng Y, Cloutier P, et al. On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparti-cles[J]. Nanotechnology, 2011, 22(46):465101. DOI:10.1088/0957-4484/22/46/465101. 13 Cutler J I, Auyeung E, Mirkin C A. Spherical nucleic acids[J]. Journal of the American Chemical Society, 2012, 134(3):1376-1391. DOI:10.1021/ja209351u. 14 Seferos D S, Giljohann D A, Hill H D, et al. Nano-flares:probes for transfection and mRNA detection in living cells[J]. Journal of the American Chemical Society, 2007, 129(50):15477-15479. DOI:10.1021/ja0776529. 15 Li N, Chang C, Pan W, et al. A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells[J]. Angewandte Chemie International Edition, 2012, 51(30):7426-7430. DOI:10.1002/anie.201203767. 16 Briley W E, Bondy M H, Randeria P S, et al. Quantification and real-time tracking of RNA in live cells using Sticky-flares[J]. Proceedings of the National Academy of Sciences, 2015, 112(31):9591-9595. DOI:10.1073/pnas.1510581112. 17 Halo T L, McMahon K M, Angeloni N L, et al. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood[J]. Proceedings of the National Academy of Sciences, 2014, 111(48):17104-17109. DOI:10.1073/pnas.1418637111. 18 Liang R Q, Li W, Li Y, et al. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe[J]. Nucleic Acids Research, 2005, 33(2):e17. DOI:10.1093/nar/gni019. 19 Wang C, Zhang H, Zeng D, et al. Elaborately designed diblock nanoprobes for simultaneous multicolor detection of microRNAs[J]. Nanoscale, 2015, 7(38):15822-15829. DOI:10.1039/C5NR04618A. 20 Zhao X, Xu L, Sun M, et al. Gold-quantum dot core-satellite assemblies for lighting up microRNA in vitro and in vivo[J]. Small, 2016. DOI:10.1002/small.201503629. 21 Hubbell J H, Seltzer S M. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients (version 1.4)[J]. National Institute of Standards and Technology, Gaithersburg, MD, 2004. 22 Hainfeld J, Slatkin D, Focella T, et al. Gold nanoparticles:a new X-ray contrast agent[J]. The British Journal of Radiology, 2006, 79(939):248-253. DOI:10.1259/bjr/13169882. 23 Kim D, Park S, Lee J H, et al. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging[J]. Journal of the American Chemical Society, 2007, 129(24):7661-7665. DOI:10.1021/ja071471p. 24 Spiers F. The influence of energy absorption and electron range on dosage in irradiated bone[J]. The British Journal of Radiology, 1949, 22(261):521-533. DOI:10.1259/0007-1285-22-261-521. 25 Castillo M H, Button T M, Doerr R, et al. Effects of radiotherapy on mandibular reconstruction plates[J]. The American Journal of Surgery, 1988, 156(4):261-263. DOI:10.1016/S0002-9610(88)80287-3. 26 Chang M Y, Shiau A L, Chen Y H, et al. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice[J]. Cancer Science, 2008, 99(7):1479-1484. DOI:10.1111/j.1349-7006.2008. 00827.x. 27 Rupnow B A, Murtha A D, Alarcon R M, et al. Direct evidence that apoptosis enhances tumor responses to fractionated radiotherapy[J]. Cancer Research, 1998, 58(9):1779-1784. 28 Rupnow B, Knox S. The role of radiation-induced apoptosis as a determinant of tumor responses to radiation therapy[J]. Apoptosis, 1999, 4(2):115-143. DOI:10.1023/A:1009675028784. 29 Verheij M, Bartelink H. Radiation-induced apoptosis[J]. Cell and Tissue Research, 2000, 301(1):133-142. DOI:10.1007/s004410000188. 30 Hainfeld J F, Smilowitz H M, O'Connor M J, et al. Gold nanoparticle imaging and radiotherapy of brain tumors in mice[J]. Nanomedicine, 2013, 8(10):1601-1609. DOI:10.2217/nnm.12.165. |