1. Pedroni E, Bacher R, Blattmann H, et al. The 200‐MeV proton therapy project at the Paul Scherrer Institute: Conceptual design and practical realization[J]. Medical Physics, 1995, 22(1): 37-53. 2. Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness (RBE) values for proton beam therapy[J]. International Journal of Radiation Oncology Biology Physics, 2002, 53(2): 407-421. 3. Furusawa Y, Fukutsu K, Aoki M, et al. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C-and 20Ne-ion beams[J]. 2009. 4. Belli F. Cera R. Cherubini M. Dalla Vecchia Ami Haque F. Ianzini G. Moschini O. Sapora G. Simone Ma Tabocchini P. Tiveron M. RBE-LET relationships for cell inactivation and mutation induced by low energy protons in V79 cells: further results at the LNL facility[J]. International journal of radiation biology, 1998, 74(4): 501-509.5. Scholz M. Effects of ion radiation on cells and tissues[M]//Radiation Effects on Polymers for Biological Use. Springer Berlin Heidelberg, 2003: 95-155.6. Schardt D, Els?sser T, Schulz-Ertner D. Heavy-ion tumor therapy: physical and radiobiological benefits[J]. Reviews of modern physics, 2010, 82(1): 383.7. K. Weyrather, S. Ritter, M. Scholz, G. Kraft W. RBE for carbon track-segment irradiation in cell lines of differing repair capacity[J]. International journal of radiation biology, 1999, 75(11): 1357-1364.8. Kr?mer M, Scholz M. Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose[J]. Physics in medicine and biology, 2000, 45(11): 3319. 9. Blakely E A, Tobias C A, Yang T C H, et al. Inactivation of human kidney cells by high-energy monoenergetic heavy-ion beams[J]. Radiation research, 1979, 80(1): 122-160.10. Staab A, Zukowski D, Walenta S, et al. Response of Chinese hamster V79 multicellular spheroids exposed to high-energy carbon ions[J]. Radiation research, 2004, 161(2): 219-227.11. Weyrather W. K., Ritter S., Scholz M. and Kraft G, RBE for Track-Segment Irradiation in Cell Lines of Differing Repair Capacity, Int. J. Radiat. Biol., (1999), 75, 1357-136412. Weyrather W K. Radiobiological Research for Hadron Therapy[J]. Progress in Radio-Oncology VII, 2002: 353-360. 13. Suzuki M, Kase Y, Yamaguchi H, et al. Relative biological effectiveness for cell-killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams[J]. International Journal of Radiation Oncology* Biology* Physics, 2000, 48(1): 241-250.14. Weyrather W K, Kraft G. RBE of carbon ions: experimental data and the strategy of RBE calculation for treatment planning[J]. Radiotherapy and Oncology, 2004, 73: S161-S169. 15. Suzuki, Y. Kase, T. Kanai, K. Ando M. Correlation between cell killing and residual chromatin breaks measured by PCC in six human cell lines irradiated with different radiation types[J]. International journal of radiation biology, 2000, 76(9): 1189-1196. 16. Els?sser T, Kr?mer M, Scholz M. Accuracy of the Local Effect Model for the Prediction of Biologic Effects of Carbon Ion Beams In Vitro and In Vivo [J]. International Journal of Radiation Oncology* Biology* Physics, 2008, 71(3): 866-872. 17. Nikjoo H, O'Neill P, Terrissol M, et al. Modelling of radiation-induced DNA damage: the early physical and chemical event[J]. International journal of radiation biology, 1994, 66(5): 453-457. 18. Karger C P, Peschke P, Sanchez-Brandelik R, et al. Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: experimental results and clinical implications[J]. International Journal of Radiation Oncology* Biology* Physics, 2006, 66(5): 1488-1497.19. LaVerne J A. Track effects of heavy ions in liquid water[J]. Radiation research, 2000, 153(5): 487-496.20. Champion C, L'hoir A, Politis M F, et al. A Monte Carlo code for the simulation of heavy-ion tracks in water[J]. Radiation research, 2005, 163(2): 222-231.21. Cucinotta F A, Pluth J M, Anderson J A, et al. Biochemical kinetics model of DSB repair and induction of γ-H2AX foci by non-homologous end joining[J]. Radiation research, 2008, 169(2): 214-222.22. Blakely E A, Tobias C A, Ngo F Q H, et al. Physical and cellular radiobiological properties of heavy ions in relation to cancer therapy applications[J]. 1980.23. Chapman J D, Blakely E A, Smith K C, et al. Radiation biophysical studies with mammalian cells and a modulated carbon ion beam[J]. Radiation research, 1978, 74(1): 101-111.24. Kanai T, Furusawa Y, Fukutsu K, et al. Irradiation of mixed beam and design of spread-out Bragg peak for heavy-ion radiotherapy[J]. Radiation research, 1997, 147(1): 78-85.25. Kagawa K, Murakami M, Hishikawa Y, et al. Preclinical biological assessment of proton and carbon ion beams at Hyogo Ion Beam Medical Center[J]. International Journal of Radiation Oncology* Biology* Physics, 2002, 54(3): 928-938. 26. Fukutsu K, Kanai T, Furusawa Y, et al. Response of mouse intestine after single and fractionated irradiation with accelerated carbon ions with a spread-out Bragg peak[J]. Radiation research, 1997, 148(2): 168-174.27. Scholz M, Kraft G. Track structure and the calculation of biological effects of heavy charged particles[J]. Advances in Space Research, 1996, 18(1): 5-14.28. 刘瑞娟. 重离子照射细胞存活率局部效应模型的计算检验[D].大连理工大学,2006.29. 刘新国,李强,杜晓刚,王阳萍,戴中颖,叶飞,吴庆丰,金晓东,李萍,党建武. 初步的IMP重离子治疗计划系统[J]. 原子核物理评论,2010,04:480-487. |