1 |
Islam M T, Saenz-Arana R, Wang H Y, et al. Green synthesis of gold, silver, platinum, and palladium nanoparticles reduced and stabilized by sodium rhodizonate and their catalytic reduction of 4-nitrophenol and methyl orange[J]. New Journal of Chemistry, 2018, 42(8): 6472-6478. DOI: 10.1039/c8nj01223g.
doi: 10.1039/c8nj01223g
|
2 |
Chang Y C, Chen D H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst[J]. Journal of Hazardous Materials, 2009, 165(1-3): 664-669. DOI: 10.1016/j.jhazmat.2008.10.034.
doi: 10.1016/j.jhazmat.2008.10.034
|
3 |
Hashmi A S K, Hutchings G J. Gold catalysis[J]. Angewandte Chemie International Edition, 2006, 45(47): 7896-7936. DOI: 10.1002/anie.200602454.
doi: 10.1002/anie.200602454
|
4 |
Mitsudome T, Noujima A, Mizugaki T, et al. Efficient aerobic oxidation of alcohols using a hydrotalcite-supported gold nanoparticle catalyst[J]. Advanced Synthesis & Catalysis, 2009, 351(11/12): 1890-1896. DOI: 10.1002/adsc.200900239.
doi: 10.1002/adsc.200900239
|
5 |
Saha K, Agasti S S, Kim C, et al. Gold nanoparticles in chemical and biological sensing[J]. Chemical Reviews, 2012, 112(5): 2739-2779. DOI: 10.1021/cr2001178.
doi: 10.1021/cr2001178
|
6 |
Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives[J]. Chemical Society Reviews, 2012, 41(6): 2256-2282. DOI: 10.1039/c1cs15166e.
doi: 10.1039/c1cs15166e
|
7 |
Cheng L C, Huang J H, Chen H M, et al. Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent[J]. Journal of Materials Chemistry, 2012, 22(5): 2244-2253. DOI: 10.1039/c1jm13937a.
doi: 10.1039/c1jm13937a
|
8 |
Zhao X M, Wang W, Liu L S, et al. Microstructure evolution of sandwich graphite oxide/interlayer-embedded Au nanoparticles induced from γ-rays for carcinoembryonic antigen biosensor[J]. Nanotechnology, 2019, 30(49): 495501. DOI: 10.1088/1361-6528/ab3e1e.
doi: 10.1088/1361-6528/ab3e1e
|
9 |
Zanolli Z, Leghrib R, Felten A, et al. Gas sensing with Au-decorated carbon nanotubes[J]. ACS Nano, 2011, 5(6): 4592-4599. DOI: 10.1021/nn200294h.
doi: 10.1021/nn200294h
|
10 |
Zhang S F, Wu W, Xiao X H, et al. Polymer-supported bimetallic Ag@AgAu nanocomposites: synthesis and catalytic properties[J]. Chemistry ― an Asian Journal, 2012, 7(8): 1781-1788. DOI: 10.1002/asia.201200348.
doi: 10.1002/asia.201200348
|
11 |
Shi F, Zhang Q, Ma Y, et al. From CO oxidation to CO2 activation: an unexpected catalytic activity of polymer-supported nanogold[J]. Journal of the American Chemical Society, 2005, 127(12): 4182-4183. DOI: 10.1021/ja042207o.
doi: 10.1021/ja042207o
|
12 |
Guan Y J, Hensen E J M. Ethanol dehydrogenation by gold catalysts: the effect of the gold particle size and the presence of oxygen[J]. Applied Catalysis A: General, 2009, 361(1/2): 49-56. DOI: 10.1016/j.apcata.2009.03.033.
doi: 10.1016/j.apcata.2009.03.033
|
13 |
He H K, Gao C. Graphene nanosheets decorated with Pd, Pt, Au, and Ag nanoparticles: Synthesis, characterization, and catalysis applications[J]. Science China Chemistry, 2011, 54(2): 397-404. DOI: 10.1007/s11426-010-4191-9.
doi: 10.1007/s11426-010-4191-9
|
14 |
Li L Z, Chen M X, Huang G B, et al. A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation[J]. Journal of Power Sources, 2014, 263: 13-21. DOI: 10.1016/j.jpowsour.2014.04.021.
doi: 10.1016/j.jpowsour.2014.04.021
|
15 |
Zhang Q L, Zhang Y W, Gao Z H, et al. A facile synthesis of platinum nanoparticle decorated graphene by one-step γ-ray induced reduction for high rate supercapacitors[J]. Journal of Materials Chemistry C, 2013, 1(2): 321-328. DOI: 10.1039/c2tc00078d.
doi: 10.1039/c2tc00078d
|
16 |
Tang Z H, Shen S L, Zhuang J, et al. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide[J]. Angewandte Chemie International Edition, 2010, 49(27): 4603-4607. DOI:10.1002/anie.201000270.
doi: 10.1002/anie.201000270
|
17 |
Deng B, Liu Z F, Peng H L. Toward mass production of CVD graphene films[J]. Advanced Materials, 2019, 31(9): 1800996. DOI: 10.1002/adma.201800996.
doi: 10.1002/adma.201800996
|
18 |
Li J H, Li J Y, Meng H, et al. Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J]. Journal of Materials Chemistry A, 2014, 2(9): 2934-2941. DOI:10.1039/c3ta14725h.
doi: 10.1039/c3ta14725h
|
19 |
He Y L, Li J H, Luo K, et al. Engineering reduced graphene oxide aerogel produced by effective γ-ray radiation-induced self-assembly and its application for continuous oil–water separation[J]. Industrial & Engineering Chemistry Research, 2016, 55(13): 3775-3781. DOI: 10.1021/acs.iecr.6b00073.
doi: 10.1021/acs.iecr.6b00073
|
20 |
Liu Y F, Shi Q W, Hou C Y, et al. Versatile mechanically strong and highly conductive chemically converted graphene aerogels[J]. Carbon, 2017, 125: 352-359. DOI: 10.1016/j.carbon.2017.09.072.
doi: 10.1016/j.carbon.2017.09.072
|
21 |
Wang Y, Zhang S, Chen H, et al. One-pot facile decoration of graphene nanosheets with Ag nanoparticles for electrochemical oxidation of methanol in alkaline solution[J]. Electrochemistry Communications, 2012, 17: 63-66. DOI: 10.1016/j.elecom.2012.01.027.
doi: 10.1016/j.elecom.2012.01.027
|
22 |
Li X F, Liu L S, Xu Z W, et al. Gamma irradiation and microemulsion assisted synthesis of monodisperse flower-like platinum-gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive detection of carcinoembryonic antigen[J]. Sensors and Actuators B: Chemical, 2019, 287: 267-277. DOI: 10.1016/j.snb.2019.02.026.
doi: 10.1016/j.snb.2019.02.026
|
23 |
He Y L, Li J H, Li L F, et al. The synergy reduction and self-assembly of graphene oxide via gamma-ray irradiation in an ethanediamine aqueous solution[J]. Nuclear Science and Techniques, 2016, 27(3): 61. DOI: 10.1007/s41365-016-0068-8.
doi: 10.1007/s41365-016-0068-8
|
24 |
Zhao X M, Li N, Jing M L, et al. Monodispersed and spherical silver nanoparticles/graphene nanocomposites from gamma-ray assisted in situ synthesis for nitrite electrochemical sensing[J]. Electrochimica Acta, 2019, 295: 434-443. DOI:10.1016/j.electacta.2018.10.039.
doi: 10.1016/j.electacta.2018.10.039
|
25 |
Gu S S, Wang W, Tan F T, et al. Facile route to hierarchical silver microstructures with high catalytic activity for the reduction of p-nitrophenol[J]. Materials Research Bulletin, 2014, 49: 138-143. DOI: 10.1016/j.materresbull.2013.08.059.
doi: 10.1016/j.materresbull.2013.08.059
|
26 |
Chi Y, Tu J C, Wang M G, et al. One-pot synthesis of ordered mesoporous silver nanoparticle/carbon composites for catalytic reduction of 4-nitrophenol[J]. Journal of Colloid and Interface Science, 2014, 423: 54-59. DOI: 10.1016/j.jcis.2014.02.029.
doi: 10.1016/j.jcis.2014.02.029
|
27 |
Huang J F, Vongehr S, Tang S C, et al. Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity[J]. Langmuir, 2009, 25(19): 11890-11896. DOI: 10.1021/la9015383.
doi: 10.1021/la9015383
|
28 |
Tang S C, Vongehr S, Meng X K. Carbon spheres with controllable silver nanoparticle doping[J]. The Journal of Physical Chemistry C, 2010, 114(2): 977-982. DOI: 10.1021/jp9102492.
doi: 10.1021/jp9102492
|
29 |
Rashid M H, Mandal T K. Synthesis and catalytic application of nanostructured silver dendrites[J]. The Journal of Physical Chemistry C, 2007, 111(45): 16750-16760. DOI: 10.1021/jp074963x.
doi: 10.1021/jp074963x
|