1 |
Grabow W W , Jaeger L . RNA self-assembly and RNA nanotechnology[J]. Accounts of Chemical Research, 2014, 47(6): 1871-1880. DOI: 10.1021/ar500076k .
doi: 10.1021/ar500076k
|
2 |
Jaeger L , Chworos A . The architectonics of programmable RNA and DNA nanostructures[J]. Current Opinion in Structural Biology, 2006, 16(4): 531-543. DOI: 10.1016/j.sbi.2006.07.001 .
doi: 10.1016/j.sbi.2006.07.001
|
3 |
Seeman N C , Sleiman H F . DNA nanotechnology[J]. Nature Reviews Materials, 2017, 3: 17068. DOI: 10.1038/natrevmats201768 .
doi: 10.1038/natrevmats201768
|
4 |
Ge Z L , Gu H Z , Li Q , et al . Concept and development of framework nucleic acids[J]. Journal of the American Chemical Society, 2018, 140(51): 17808-17819. DOI: 10.1021/jacs.8b10529 .
doi: 10.1021/jacs.8b10529
|
5 |
Zhang H , Chao J , Pan D , et al . DNA origami-based shape IDs for single-molecule nanomechanical genotyping[J]. Nature Communications, 2017, 8: 14738. DOI: 10.1038/ncomms14738 .
doi: 10.1038/ncomms14738
|
6 |
Chao J , Wang J B , Wang F , et al . Solving mazes with single-molecule DNA navigators[J]. Nature Materials, 2019, 18(3): 273-279. DOI: 10.1038/s41563-018-0205-3 .
doi: 10.1038/s41563-018-0205-3
|
7 |
Liu W Y , Halverson J , Tian Y , et al . Self-organized architectures from assorted DNA-framed nanoparticles[J]. Nature Chemistry, 2016, 8(9): 867-873. DOI: 10.1038/nchem.2540 .
doi: 10.1038/nchem.2540
|
8 |
Li J , Pei H , Zhu B , et al . Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides[J]. ACS Nano, 2011, 5(11): 8783-8789. DOI: 10.1021/nn202774x .
doi: 10.1021/nn202774x
|
9 |
Jiang D W , Ge Z L , Im H J , et al . DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury[J]. Nature Biomedical Engineering, 2018, 2(11): 865-877. DOI: 10.1038/s41551-018-0317-8 .
doi: 10.1038/s41551-018-0317-8
|
10 |
He L , Lu D Q , Liang H , et al . mRNA-initiated, three-dimensional DNA amplifier able to function inside living cells[J]. Journal of the American Chemical Society, 2018, 140(1): 258-263. DOI: 10.1021/jacs.7b09789 .
doi: 10.1021/jacs.7b09789
|
11 |
李甫梧, 王丽华, 宋世平 . 基于电化学分析法定量检测MicroRNA的生物传感器[J]. 辐射研究与辐射工艺学报, 2016, 34(3): 030101. DOI: 10.11889/j.1000-3436.2016.rrj.34.030101 .
doi: 10.11889/j.1000-3436.2016.rrj.34.030101
|
|
LI Fuwu , WANG Lihua , SONG Shiping . Electrochemical-based biosensors for quantification microRNA[J]. Journal of Radiation Research and Radiation Processing, 2016, 34(3): 030101. DOI: 10.11889/j.1000-3436.2016.rrj.34.030101 .
doi: 10.11889/j.1000-3436.2016.rrj.34.030101
|
12 |
李敏, 张月月, 刘江波, 等 . 类神经细胞释放多巴胺的实时监测[J]. 辐射研究与辐射工艺学报, 2018, 34(6): 050201. DOI: 10.11889/j.1000-3436.2018.rrj.36.050201 .
doi: 10.11889/j.1000-3436.2018.rrj.36.050201
|
|
LI Min , ZHANG Yueyue , LIU Jiangbo , et al . Monitoring dopamine release from neuron-like cells[J]. Journal of Radiation Research and Radiation Processing, 2018, 34(6): 050201. DOI: 10.11889/j.1000-3436.2018.rrj.36.050201 .
doi: 10.11889/j.1000-3436.2018.rrj.36.050201
|
13 |
龙亿涛, 樊春海 . 纳米传感器[J]. 化学学报, 2017, 75: 1021-1022. DOI: 10.6023/A1711E001 .
doi: 10.6023/A1711E001
|
|
LONG Yitao , FAN Chunhai . Nanosensors[J]. Acta Chimica Sinica, 2017, 75: 1021-1022. DOI: 10.6023/A1711E001 .
doi: 10.6023/A1711E001
|
14 |
Pei H , Zuo X L , Zhu D , et al . Functional DNA nanostructures for theranostic applications[J]. Accounts of Chemical Research, 2014, 47(2): 550-559. DOI: 10.1021/ar400195t .
doi: 10.1021/ar400195t
|
15 |
Lin M H , Wang J J , Zhou G B , et al . Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection[J]. Angewandte Chemie International Edition, 2015, 54(7): 2151-2155. DOI: 10.1002/anie.201410720 .
doi: 10.1002/anie.201410720
|
16 |
Fu T J , Seeman N C . DNA double-crossover molecules[J]. Biochemistry, 1993, 32(13): 3211-3220. DOI: 10.1021/bi00064a003 .
doi: 10.1021/bi00064a003
|
17 |
Seeman N C . Nucleic acid junctions and lattices[J]. Journal of Theoretical Biology, 1982, 99(2): 237-247. DOI: 10.1016/0022-5193(82)90002-9 .
doi: 10.1016/0022-5193(82)90002-9
|
18 |
Goodman R P . NANEV: a program employing evolutionary methods for the design of nucleic acid nanostructures[J]. Biotechniques, 2005, 38(4): 548-550. DOI: 10.2144/05384BM06 .
doi: 10.2144/05384BM06
|
19 |
Seeman N C . De novo design of sequences for nucleic acid structural engineering[J]. Journal of Biomolecular Structure and Dynamics, 1990, 8(3): 573-581. DOI: 10.1080/07391102.1990.10507829 .
doi: 10.1080/07391102.1990.10507829
|
20 |
Rothemund P W . Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297-302. DOI: 10.1038/nature04586 .
doi: 10.1038/nature04586
|
21 |
Douglas S M , Marblestone A H , Teerapittayanon S , et al . Rapid prototyping of 3D DNA-origami shapes with caDNAno[J]. Nucleic Acids Research, 2009, 37(15): 5001-5006. DOI: 10.1093/nar/gkp436 .
doi: 10.1093/nar/gkp436
|
22 |
Williams S , Lund K , Lin C X , et al . Tiamat: a three-dimensional editing tool for complex DNA structures[J]. DNA Computing, 2009, 5347: 90-101. DOI: 10.1007/978-3-642-03076-5_8 .
doi: 10.1007/978-3-642-03076-5_8
|
23 |
Wei B , Dai M , Yin P . Complex shapes self-assembled from single-stranded DNA tiles[J]. Nature, 2012, 485(7400): 623-626. DOI: 10.1038/nature11075 .
doi: 10.1038/nature11075
|
24 |
Jasinski D , Haque F , Binzel D W , et al . Advancement of the emerging field of RNA nanotechnology[J]. ACS Nano, 2017, 11(2): 1142-1164. DOI: 10.1021/acsnano.6b05737 .
doi: 10.1021/acsnano.6b05737
|
25 |
Sharma A , Haque F , Pi F M , et al . Controllable self-assembly of RNA dendrimers[J]. Nanomedicine-Nanotechnology Biology and Medicine, 2016, 12(3): 835-844. DOI: 10.1016/j.nano.2015.11.008 .
doi: 10.1016/j.nano.2015.11.008
|
26 |
Khisamutdinov E F , Li H , Jasinski D L , et al . Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles[J]. Nucleic Acids Research, 2014, 42(15): 9996-10004. DOI: 10.1093/nar/gku516 .
doi: 10.1093/nar/gku516
|
27 |
Shu Y , Haque F , Shu D , et al . Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs[J]. RNA, 2013, 19(6): 767-777. DOI: 10.1261/rna.037002.112 .
doi: 10.1261/rna.037002.112
|
28 |
Han D R , Pal S , Nangreave J , et al . DNA origami with complex curvatures in three-dimensional space[J]. Science, 2011, 332(6027): 342-346. DOI: 10.1126/science.1202998 .
doi: 10.1126/science.1202998
|
29 |
Benson E , Mohammed A , Gardell J , et al . DNA rendering of polyhedral meshes at the nanoscale[J]. Nature, 2015, 523(7561): 441-444. DOI: 10.1038/nature14586 .
doi: 10.1038/nature14586
|
30 |
Chen Q S , Liu H J , Lee W , et al . Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control[J]. Lab on a Chip, 2013, 13(17): 3351-3354. DOI: 10.1039/C3LC50629K .
doi: 10.1039/C3LC50629K
|
31 |
Steinhauer C , Jungmann R , Sobey T L , et al . DNA origami as a nanoscopic ruler for super-resolution microscopy[J]. Angewandte Chemic International Edtion, 2009, 48(47): 8870-8873. DOI: 10.1002/anie.200903308 .
doi: 10.1002/anie.200903308
|
32 |
Schmied J J , Gietl A , Holzmeister P , et al . Fluorescence and super-resolution standards based on DNA origami[J]. Nature Methods, 2012, 9(12): 1133-1134. DOI: 10.1038/nmeth.2254 .
doi: 10.1038/nmeth.2254
|
33 |
Schmied J J , Raab M , Forthmann C , et al . DNA origami-based standards for quantitative fluorescence microscopy[J]. Nature Protocols, 2014, 9(6): 1367-1391. DOI: 10.1038/nprot.2014.079 .
doi: 10.1038/nprot.2014.079
|
34 |
Li J , Song S P , Liu X F , et al . Enzyme-based multi-component optical nanoprobes for sequence-specific detection of DNA hybridization [J]. Advanced Materials, 2008, 20(3): 497-500. DOI: 10.1002/adma.200701918 .
doi: 10.1002/adma.200701918
|
35 |
王建榜, 柳华杰, 王丽华 . DNA 折纸模板构建表面等离子体共振结构研究进展[J]. 辐射研究与辐射工艺学报, 2017, 35 (4): 040101. DOI: 10.11889/j.1000-3436.2017.rrj.35.040101 .
doi: 10.11889/j.1000-3436.2017.rrj.35.040101
|
|
WANG Jianbang , LIU Huajie , WANG Lihua . Progress in DNA origami-assembled surface plasmon resonance structures [J]. Journal of Radiation Research and Radiation Processing, 2017, 35(4): 040101. DOI: 10.11889/j.1000-3436.2017.rrj.35.040101 .
doi: 10.11889/j.1000-3436.2017.rrj.35.040101
|
36 |
Kuzyk A , Schreiber R , Fan Z Y , et al . DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response[J]. Nature, 2012, 483(7389): 311-314. DOI: 10.1038/nature10889 .
doi: 10.1038/nature10889
|
37 |
Kuzyk A , Laitinen K T , Torma P . DNA origami as a nanoscale template for protein assembly[J]. Nanotechnology, 2009, 20(23): 235305. DOI: 10.1088/0957-4484/20/23/235305 .
doi: 10.1088/0957-4484/20/23/235305
|
38 |
Zhang Z , Wang Y , Fan C H , et al . Asymmetric DNA origami for spatially addressable and index-free solution-phase DNA chips[J]. Advanced Materials, 2010, 22(24): 2672-2675. DOI: 10.1002/adma.201000151 .
doi: 10.1002/adma.201000151
|
39 |
Sacca B , Meyer R , Erkelenz M , et al . Orthogonal protein decoration of DNA origami[J]. Angewandte Chemic International Edtion, 2011, 7(22): 3211-3218. DOI: 10.1002/smll.201101365 .
doi: 10.1002/smll.201101365
|
40 |
Mathur D , Medintz I L . Analyzing DNA nanotechnology: a call to arms for the analytical chemistry community[J]. Analytical Chemistry, 2017, 89(5): 2646-2663. DOI: 10.1021/acs.analchem.6b04033 .
doi: 10.1021/acs.analchem.6b04033
|
41 |
Dunn K E , Dannenberg F , Ouldridge T E , et al . Guiding the folding pathway of DNA origami[J]. Nature, 2015, 525(7567): 82-86. DOI: 10.1038/nature14860 .
doi: 10.1038/nature14860
|
42 |
Urban M J , Both S , Zhou C , et al . Gold nanocrystal-mediated sliding of doublet DNA origami filaments[J]. Nature Communications, 2018, 9: 1454. DOI: 10.1038/s41467-018-03882-w .
doi: 10.1038/s41467-018-03882-w
|
43 |
Mathur D , Henderson E R . Programmable DNA nanosystem for molecular interrogation[J]. Scientific Reports, 2016, 6(1): 27413. DOI: 10.1038/srep27413 .
doi: 10.1038/srep27413
|
44 |
Nickels P C , Hoiberg H C , Simmel S S , et al . DNA origami seesaws as comparative binding assay[J]. Chembiochem, 2016, 17(12): 1093-1096. DOI: 10.1002/cbic.201600059 .
doi: 10.1002/cbic.201600059
|
45 |
Praetorius F , Kick B , Behler K L , et al . Biotechnological mass production of DNA origami[J]. Nature, 2017, 552(7683): 84-87. DOI: 10.1038/nature24650 .
doi: 10.1038/nature24650
|
46 |
Liu J F , Geng Y L , Pound E , et al . Metallization of branched DNA origami for nanoelectronic circuit fabrication[J]. ACS Nano, 2011, 5(3): 2240-2247. DOI: 10.1021/nn1035075 .
doi: 10.1021/nn1035075
|
47 |
Liu Z , Tian C , Yu J , et al . Self-assembly of responsive multilayered DNA nanocages[J]. Journal of American Chemical Society, 2015, 137(5): 1730-1733. DOI: 10.1021/ja5101307 .
doi: 10.1021/ja5101307
|
48 |
Zhang C , Su M , He Y , et al . Exterior modification of a DNA tetrahedron[J]. Chemical Communications, 2010, 46(36): 6792-6794. DOI: 10.1039/C0CC02363A .
doi: 10.1039/C0CC02363A
|
49 |
Iinuma R , Ke Y G , Jungmann R , et al . Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT[J]. Science, 2014, 344(6179): 65-69. DOI: 10.1126/science.1250944 .
doi: 10.1126/science.1250944
|
50 |
Ke Y G , Lindsay S , Chang Y , et al . Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays[J]. Science, 2008, 319(5860): 180-183. DOI: 10.1126/science.1150082 .
doi: 10.1126/science.1150082
|
51 |
Kuzuya A , Sakai Y , Yamazaki T , et al . Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy[J]. Nature Communications, 2011, 2(1): 449. DOI: 10.1038/ncomms1452 .
doi: 10.1038/ncomms1452
|
52 |
Xu W D , Yin P , Dai M J . Super-resolution geometric barcoding for multiplexed miRNA profiling[J]. Angewandte Chemie International Edition, 2018, 57(43): 14075-14079. DOI: 10.1016/j.bpj.2018.11.2379 .
doi: 10.1016/j.bpj.2018.11.2379
|
53 |
Subramanian H K K , Chakraborty B , Sha R , et al . The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami[J]. Nano Letters, 2011, 11(2): 910-913. DOI: 10.1021/nl104555t .
doi: 10.1021/nl104555t
|
54 |
Zhang H L , Chao J , Pan D , et al . DNA origami-based shape IDs for single-molecule nanomechanical genotyping[J]. Nature Communications, 2017, 8: 14738. DOI: 10.1038/ncomms14738 .
doi: 10.1038/ncomms14738
|
55 |
Chao J , Zhang H L , Xing Y K , et al . Programming DNA origami assembly for shape-resolved nanomechanical imaging labels[J]. Nature Protocols 2018, 13(7): 1569-1585. DOI: 10.1038/s41596-018-0004-y .
doi: 10.1038/s41596-018-0004-y
|
56 |
Liu K , Pan D , Wen Y Q , et al . Identifying the genotypes of hepatitis B virus (HBV) with DNA origami label[J]. Small, 2018, 14(6): 1701718. DOI: 10.1002/smll. 201701718 .
doi: 10.1002/smll. 201701718
|
57 |
赵彦, 李凡, 郭琳洁, 等 . 基于核定位序列-DNA四面体复合纳米结构的细胞核成像研究[J]. 核技术, 2017, 40(5): 050501. DOI: 10.11889/j.0253-3219.2017.hjs.40.050501 .
doi: 10.11889/j.0253-3219.2017.hjs.40.050501
|
|
ZHAO Yan , LI Fan , GUO Linjie , et al . The nuclei imaging of nucleus localization signal-DNA tetrahedron composite nanostructures[J]. Nuclear Techniques, 2017, 40(5): 050501. DOI: 10.11889/j.0253-3219.2017.hjs.40.050501 .
doi: 10.11889/j.0253-3219.2017.hjs.40.050501
|
58 |
Mei Q , Wei X , Su F , et al . Stability of DNA origami nanoarrays in cell lysate[J]. Nano Letters, 2011, 11(4): 1477-1482. DOI: 10.1021/nl1040836 .
doi: 10.1021/nl1040836
|
59 |
Surana S , Bhatia D , Krishnan Y . A method to study in vivo stability of DNA nanostructures[J]. Methods, 2013, 64(1): 94-100. DOI: 10.1016/j.ymeth.2013.04.002 .
doi: 10.1016/j.ymeth.2013.04.002
|
60 |
Walsh A S , Yin H Y , Erben C M , et al . DNA cage delivery to mammalian cells[J]. ACS Nano, 2011, 5(7): 5427-5432. DOI: 10.1021/nn2005574 .
doi: 10.1021/nn2005574
|
61 |
Liu Z C , Pei H , Zhang L M , et al . Mitochondria-targeted DNA nanoprobe for real-time imaging and simultaneous quantification of Ca2+ and pH in neurons[J]. ACS Nano, 2018, 12(12): 12357-12368. DOI: 10.1021/acsnano.8b06322 .
doi: 10.1021/acsnano.8b06322
|
62 |
Xie N L , Huang J , Yang X Y , et al . A DNA tetrahedron-based molecular beacon for tumor-related mRNA detection in living cells[J]. Chemical Communications, 2016, 52(11): 2346-2349. DOI: 10.1039/C5CC09980C .
doi: 10.1039/C5CC09980C
|
63 |
Alizadeh E , Orlando T M , Sanche L . Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA[J]. Annual Review of Physical Chemistry, 2015, 66: 379-398. DOI: 10.1146/annurev-physchem-040513-103605 .
doi: 10.1146/annurev-physchem-040513-103605
|
64 |
宋萍, 相法伟, 李敏, 等 . 基于DNA纳米结构的别构效应综述[J]. 辐射研究与辐射工艺学报, 2016, 34(6): 060102. DOI: 10.11889/j.1000-3436.2016.rrj.34.060102 .
doi: 10.11889/j.1000-3436.2016.rrj.34.060102
|
|
SONG Ping , XIANG Fawei , LI Min , et al . Review of dynamic allosteric control based on DNA nanostructure [J]. Journal of Radiation Research and Radiation Processing, 2016, 34(6): 060102. DOI: 10.11889/j.1000-3436.2016.rrj.34.060102 .
doi: 10.11889/j.1000-3436.2016.rrj.34.060102
|
65 |
Kulkarni A , Kim B , Dugasani S R , et al . A novel nanometric DNA thin film as a sensor for alpha radiation[J]. Scientific Reports, 2013, 3: 2062 DOI: 10.1038/srep02062 .
doi: 10.1038/srep02062
|
66 |
Dugasani S R , Kim J A , Kim B , et al . A 2D DNA lattice as an ultrasensitive detector for beta radiations[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 2974-2979. DOI: 10.1021/am4055723 .
doi: 10.1021/am4055723
|
67 |
Boudaiffa B , Cloutier P , Hunting D , et al . Resonant for-mation of DNA strand breaks by low-energy (3 to 20 eV) electrons[J]. Science, 2000, 287(5458): 1658-1660. DOI: 10.1126/science.287.5458.1658 .
doi: 10.1126/science.287.5458.1658
|
68 |
Keller A , Bald I , Rotaru A , et al . Probing electron-induced bond cleavage at the single-molecule level using DNA origami templates[J]. ACS Nano, 2012, 6(5): 4392-4399. DOI: 10.1021/nn3010747 .
doi: 10.1021/nn3010747
|