1 Pines D, Bohm D. A collective description of electron interactions: Ⅱ. collective vs. individual particle aspects of the interactions[J]. Physical Review, 1952, 85(2): 338-353. DOI: 10.1103/PhysRev.85.338.
2 Zeng S W, Yu X, Law W C, et al. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement[J]. Sensors and Actuators B: Chemical, 2013, 176: 1128-1133. DOI: 10.1016/j.snb. 2012.09.073.
3 Chan G H, Zhao J, Hicks E M, et al. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography[J]. Nano Letters, 2007, 7(7): 1947-1952. DOI: 10.1021/nl070648a.
4 Langhammer C, Yuan Z, Zoric? I, et al. Plasmonic properties of supported Pt and Pd nanostructures[J]. Nano Letters, 2006, 6(4): 833-838. DOI: 10.1021/ nl060219x.
5 Langhammer C, Kasemo B, Zoric? I. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios[J]. The Journal of Chemical Physics, 2007, 126(19): 194702. DOI: 10.1063/1.2734550.
6 Knight M W, King N S, Liu L F, et al. Aluminum for plasmonics[J]. ACS Nano, 2014, 8(1): 834-840. DOI: 10.1021/nn405495q.
7 Li Z, Hao F, Huang Y, et al. Directional light emission from propagating surface plasmons of silver nanowires[J]. Nano Letters, 2009, 9(12): 4383-4386. DOI: 10.1021/ nl902651e.
8 Rycenga M, Cobley C M, Zeng J, et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications [J]. Chemical Reviews, 2011, 111(6): 3669-3712. DOI: 10.1021/cr100275d.
9 Wark A W, Lee H J, Corn R M. Long-range surface plasmon resonance imaging for bioaffinity sensors[J]. Analytical Chemistry, 2005, 77(13): 3904-3907. DOI: 10.1021/ac050402v.
10 Stewart M E, Anderton C R, Thompson L B, et al. Nanostructured plasmonic sensors[J]. Chemical Reviews, 2008, 108(2): 494-521. DOI: 10.1021/ cr068126n.
11 Butet Jérémy, Martin Olivier J F. Surface-enhanced hyper-Raman scattering: a new road to the observation of low energy molecular vibrations[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15547-15556. DOI: 10.1021/acs.jpcc.5b04128.
12 Wirth J, Garwe F, Bergmann J, et al. Tuning of spectral and angular distribution of scattering from single gold nanoparticles by subwavelength interference layers[J]. Nano Letters, 2014, 14(2): 570-577. DOI: 10.1021/ nl4037438.
13 Zhang P, Lee S, Yu H, et al. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength- modulation[J]. Scientific Reports, 2015, 5: 11447. DOI: 10.1038/srep11447.
14 Li J T, Cushing S K, Zheng P, et al. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array[J]. Nature Commu- nications, 2013, 4: 2651. DOI: 10.1038/ ncomms3651.
15 Seeman N C. Nucleic acid junctions and lattices[J]. Journal of Theoretical Biology, 1982, 99(2): 237-247. DOI: 10.1016/0022-5193(82)90002-9.
16 Fu T, Seeman N C. DNA double-crossover molecules[J]. Biochemistry, 1993, 32(13): 3211-3220. DOI: 10.1021/ bi00064a003.
17 LaBean T H, Yan H, Kopatsch J, et al. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes[J]. Journal of the American Chemical Society, 2000, 122(9): 1848-1860. DOI: 10. 1021/ja993393e.
18 Rothemund P W K. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297-302. DOI: 10.1038/nature04586.
19 Dietz H, Douglas S M, Shih W M. Folding DNA into twisted and curved nanoscale shapes[J]. Science, 2009, 325(5941): 725-730. DOI: 10. 1126/science.1174251.
20 Han D, Pal S, Nangreave J, et al. DNA origami with complex curvatures in three-dimensional space[J]. Science, 2011, 332(6027): 342-346. DOI: 10.1126/ science.1202998.
21 Iinuma R, Ke Y G, Jungmann R, et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-Paint[J]. Science, 2014, 344(6179): 65-69. DOI: 10.1126/science.1250944.
22 Pinheiro A V, Han D, Shih W M, et al. Challenges and opportunities for structural DNA nanotechnology[J]. Nature Nanotechnology, 2011, 6(12): 763-772. DOI: 10.1038/nnano.2011.187.
23 Sharma J, Chhabra R, Andersen C S, et al. Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold[J]. Journal of the American Chemical Society, 2008, 130(25): 7820-7821. DOI: 10.1021/ ja802853r.
24 Ding B Q, Deng Z T, Yan H, et al. Gold nanoparticle self-similar chain structure organized by DNA origami[J]. Journal of the American Chemical Society, 2010, 132(10): 3248-3249. DOI: 10.1021/ ja9101198.
25 Pal S, Deng Z, Ding B, et al. DNA-origami-directed self-assembly of discrete silver-nanoparticle architect- tures[J]. Angewandte Chemie International Edition, 2010, 49(15): 2700-2704. DOI: 10.1002/anie. 201000330.
26 Pal S, Deng Z T, Wang H N, et al. DNA directed self-assembly of anisotropic plasmonic nanostructures[J]. Journal of the American Chemical Society, 2011, 133(44): 17606-17609. DOI: 10.1021/ ja207898r.
27 Pal S, Dutta P, Wang H N, et al. Quantum efficiency modification of organic fluorophores using gold nanoparticles on DNA origami scaffolds[J]. The Journal of Physical Chemistry C, 2013, 117(24): 12735-12744. DOI: 10.1021/ jp312422n.
28 Kuzyk A, Schreiber R, Fan Z Y, et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response[J]. Nature, 2012, 483(7389): 311-314. DOI: 10.1038/nature10889.
29 Shen X B, Song C, Wang J Y, et al. Rolling up gold nanoparticle-dressed DNA origami into three- dimensional plasmonic chiral nanostructures[J]. Journal of the American Chemical Society, 2011, 134(1): 146-149. DOI: 10.1021/ja209861x.
30 Lan X, Chen Z, Dai G L, et al. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality[J]. Journal of the American Chemical Society, 2013, 135(31): 11441-11444. DOI: 10.1021/ ja404354c.
31 Schlather A E, Large N, Urban A S, et al. Near-field mediated plexcitonic coupling and giant rabi splitting in individual metallic dimers[J]. Nano Letters, 2013, 13(7): 3281-3286. DOI: 10.1021/ nl4014887.
32 Vogele K, List J, Pardatscher G, et al. Self-assembled active plasmonic waveguide with a peptide-based thermomechanical switch[J]. ACS Nano, 2016, 10(12): 11377-11384. DOI: 10.1021/acsnano. 6b06635.
33 Acuna G P, Moller F M, Holzmeister P, et al. Fluorescence enhancement at docking sites of DNA- directed self-assembled nanoantennas[J]. Science, 2012, 338(6106): 506-510. DOI: 10.1126/science. 228638.
34 Zhang T S, Gao N Y, Li S, et al. Single-particle spectroscopic study on fluorescence enhancement by plasmon coupled gold nanorod dimers assembled on DNA origami[J]. Journal of Physical Chemistry Letters, 2015, 6(11): 2043-2049. DOI: 10. 1021/acs.jpclett. 5b00747.
35 Fleischmann M, Hendra P J, Mcquillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166. DOI: 10. 1016/0009-2614(74)85388-1.
36 Thacker V V, Herrmann L O, Sigle D O, et al. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering[J]. Nature Communi- cations, 2013, 5: 3448. DOI: 10.1038/ ncomms4448.
37 Pilo-Pais M, Watson A, Demers S, et al. Surface- enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures[J]. Nano Letters, 2014, 14(4): 2099-2104. DOI: 10.1021/ nl5003069.
38 Kuehler P, Roller E M, Schreiber R, et al. Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy[J]. Nano Letters, 2014, 14(5): 2914-2919. DOI: 10.1021/nl5009635.
39 Simoncelli S, Roller E M, Urban P, et al. Quantitative single-molecule surface-enhanced raman scattering by optothermal tuning of DNA origami-assembled plasmonic nanoantennas[J]. ACS Nano, 2016, 10(11): 9809-9815. DOI: 10.1021/ acsnano.6b05276.
40 Weller L, Thacker V V, Herrmann L O, et al. Gap- dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly[J]. ACS Photonics, 2016, 3(9): 1589-1595. DOI: 10.1021/ acsphotonics.6b00062.
41 Prinz J, Heck C, Ellerik L, et al. DNA origami based Au-Ag-core-shell nanoparticle dimers with single- molecule SERS sensitivity[J]. Nanoscale, 2016, 8(10): 5612-5620. DOI: 10.1039/c5nr08674d.
42 Prinz J, Matkovic A, Pesic J, et al. Hybrid structures for surface-enhanced raman scattering: DNA origami/gold nanoparticle dimer/ graphene[J]. Small, 2016, 12(39): 5458-5467. DOI: 10. 1002/smll. 201601908. |