1 Zhang Q, Bhattacharya S, Andersen M E. Ultrasensitive response motifs: Basic amplifiers in molecular signaling networks[J]. Open Biology, 2013, 3: 1-19. DOI: 10.1098/rsob.130031.
2 Motlagh H N, Wrabl J O, Li J, et al. The ensemble nature of allostery[J]. Nature, 2014, 508: 331-339. DOI: 10. 1038/nature13001
3 王镜岩, 朱圣庚, 徐长法. 生物化学: 第3版[M]. 北京:高等教育出版社, 2002: 413-420 WANG Jingyan, ZHU Shenggeng, XU Changfa. Biochemistry: 3rd ed[M]. Beijing: Higher Education Press, 2002: 413-420.
4 Philips S J, Canalizo-Hernandez M, Yildirim I, et al. Allosteric transcriptional regulation via changes in the overall topology of the core promoter[J]. Science, 2015, 349: 877-881. DOI: 10.1126/science.aaa9809.
5 Schena A, Griss R, Johnsson K. Modulating protein activity using tethered ligands with mutually exclusive binding sites[J]. Nature Communication, 2015, 6: 1-8. DOI: 10.1038/ncomms8830.
6 Kovermann M, Aden J, Grundstrom C, et al. Structural basis for catalytically restrictive dynamics of a high-energy enzyme state[J]. Nature Communication, 2015, 6: 1-9. DOI: 10.1038/ncomms8644.
7 Malmstrom R D, Kornev A P, Taylor S S, et al. Allostery through the computational microscope: camp activation of a canonical signalling domain[J]. Nature Communication 2015, 6: 1-11. DOI: 10.1038/ncomms8588.
8 Tenconi E, Urem M, ?wi?tek-Po?atyńska M A, et al. Multiple allosteric effectors control the affinity of DasR for its target sites[J]. Biochemical and Biophysical Research Communications, 2015, 464: 324-329. DOI: 10.1016/j.bbrc.2015.07.059
9 Iversen L, Tu H L, Lin W C, et al. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics[J]. Science, 2014, 345: 50-54. DOI: 10.1126/science.1250373
10 Fan C, Plaxco K W, Heeger A J. Biosensors based on binding-modulated donor–acceptor distances[J]. Trends in Biotechnology, 2005, 23: 186-192. DOI: 10.1016/j. tibtech.2005.02.005
11 杨陶丽薇, 刘瑞媛, 顾文婷, 等. 碳离子辐照对甜高粱糖分与蔗糖代谢相关酶活力的影响[J]. 辐射研究与辐射工艺学报, 2015, 33(5): 040502. DOI: 10.11889/j.1000-3436.2015.rrj.33.050402. YANG Taoliwei, LIU Ruiyuan, GU Wenting, et al. Effects on the sugar components and related enzyme activity of sucrose metabolism by carbon ion irradiation in sweet sorghum[J]. Journal of Radiation Research and Radiation Processing, 2015, 33(5): 040502. DOI: 10.11889/j.1000-3436.2015.rrj.33.050402.
12 刘琼, 何颖, 沈先荣, 等. 血清受体酪氨酸激酶AXL 可作为电离辐射剂量估算的生物指标[J]. 辐射研究与辐射工艺学报, 2015, 33(3): 030204. DOI: 10.11889/j.1000-3436.2015.rrj.33.030204. LIU Qiong, HE Ying, SHEN Xianrong, et al. Serum AXL as biomarker for acute radiation exposure[J]. Journal of Radiation Research and Radiation Processing, 2015, 33(3): 030204. DOI: 10.11889/j.1000-3436.2015.rrj.33.030204.
13 程彭超, 闵锐. 辐射防护/减轻/调节剂研究综述[J]. 辐射研究与辐射工艺学报, 2015, 33(6): 060101. DOI: 10.11889/j.1000-3436.2015.rrj.33.060101.CHENG Pengchao, MIN Rui. Review on radiation protection/mitigating/regulating agents[J]. Journal of Radiation Research and Radiation Process, 2015, 33(6): 060101. DOI: 10.11889/j.1000-3436.2015.rrj.33.060101.
14 Ribeiro A A, Ortiz V. A chemical perspective on allostery[J]. Chemical Reviews, 2016, 116(11): 6488-6502. DOI: 10.1021/acs.chemrev.5b00543.
15 Yuan Y, Tam M F, Simplaceanu V, et al. New look at hemoglobin allostery[J]. Chemical Reviews, 2015, 115: 1702-1724. DOI: 10.1021/cr500495x.
16 Duke T A J, Bray D. Heightened sensitivity of a lattice of membrane receptors[J]. Proceedings of the National Academy of Sciences, 1999, 96: 10104-10108. DOI: 10. 1073/pnas.96.18.10104.
17 李前忠, 张利绒. 别构酶活性调节的一种新模型[J]. 内蒙古大学学报, 1999, 30(5): 592-596.LI Qianzhong, ZHANG Lirong, A new model on regulation of allosteric enzyme activity[J]. Acta Scientiarum Naturalium Universitatis Neimongol, 1999, 30(5): 592-596.
18 Hogan M, Dattagupta N, Crothers D M. Transmission of allosteric effects in DNA[J]. Nature, 1979, 278: 521-524. DOI: 10.1038/278521a0.
19 Nahvi A, Sudarsan N, Ebert M S, et al. Genetic control by a metabolite binding mRNA[J]. Chemistry & Biology, 2002, 9: 1043-1049. DOI: 10.1016/S1074-5521(02) 00224-7.
20 Mironov A S, Gusarov I, Rafikov R, et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria[J]. Cell, 2002, 111: 747-756. DOI: 10.1016/S0092-8674(02)01134-0.
21 Barrick J E, Corbino K A, Winkler W C, et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control[J]. Proceedings of the National Academy of Sciences, 2004, 101(17): 6421-6426. DOI: 10.1073/pnas.0308014101.
22 Tang J, Breaker R R. Rational design of allosteric ribozymes[J]. Chemistry & Biology, 1997, 4: 453-459. DOI: 10.1016/S1074-5521(97)90197-6.
23 Schwalbe H, Buck J, Furtig B, et al. Structures of RNA switches: insight into molecular recognition and tertiary structure[J]. Angewandte Chemie International Edition, 2007, 46: 1212-1219. DOI: 10.1002/anie.200604163.
24 Ellington A D, Szostak J W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures[J]. Nature, 1992, 355: 850-852.
25 Isaacs F J, Dwyer D J, DING Chunming, et al. Engineered riboregulators enable post-transcriptional control of gene expression[J]. Nature Biotechnology, 2004, 22: 841-847.
26 Isaacs F J, Dwyer D J, Collins J J. RNA synthetic biology[J]. Nature Biotechnology, 2006, 24(5): 545-554.
27 Penchovsky R, Breaker R R. Computational design and experimental validation of oligonucleotide-sensing allosteric ribozymes[J]. Nature Biotechnology, 2005, 23: 1424-1433. DOI: 10.1038/nbt1155.
28 Esteban F, Berta W, Herschel M. Determinants of the biosensors[J]. Analytical Chemistry, 2013, 85: 6593-6597. DOI: 10.1021/ac4012123.
29 Simon A J, Vallée-Bélisle A, Ricci F, et al. Using the population-shift mechanism to rationally introduce “Hill-type” cooperativity into a normally non-cooperative receptor[J]. Angewandte Chemie International Edition, 2014, 53: 1-6. DOI: 10.1002/anie.201403777.
30 Drabovich A P, Okhonin V, Berezovski M. et al. Smart aptamers facilitate multi-probe affinity analysis of proteins with ultra-wide dynamic range of measured concentrations[J]. Journal of the American Chemical Society, 2007, 129(23): 7260-7261. DOI: 10.1021/ja072269p.
31 Ventura A C, Bush A, Vasen G, et al. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range[J]. Proceedings of the National Academy of Sciences, 2014, 111(37): E3860-E3869. DOI: 10.1073/pnas.1322761111.
32 Simon A J, Vallée-Bélisle A, Ricci F, et al. Intrinsic disorder as a generalizable strategy for the rational design of highly responsive, allosterically cooperative receptors[J]. Proceedings of the National Academy of Sciences, 2014, 111(42): 15048-15053. DOI: 10.1073/pnas.1410796111.
33 Vallée-Bélisle A, Plaxco K W, Structure-switching biosensors: inspired by Nature[J]. Current Opinion in Structural Biology, 2010, 20(4): 518-526. DOI: 10.1016/j.sbi.2010.05.001.
34 Guo W W, Lu C H, Orbach R, et al. pH-stimulated DNA hydrogels exhibiting shape-memory properties[J]. Advanced Materials, 2015, 27(1): 73-78. DOI: 10.1002/adma.201403702
35 Guo W W, Lu C H, Qi X J, et al. Switchable bifunctional stimuli-triggered poly-n-isopropylacrylamide/DNA hydro-gels[J]. Angewandte Chemie International Edition, 2014, 53(38): 10134-10138. DOI: 10.1002/ange. 201405692.
36 Cheng E J, Xing Y Z, Chen P, et al. A pH-triggered, fast-responding DNA hydrogel[J]. Angewandte Chemie International Edition, 2009, 121(41): 7796-7799. DOI: 10.1002/ange.200902538.
37 Alessandro P, Vallée-Bélisle, A, Plaxco, K W, et al. Allosterically tunable, DNA-based switches triggered by heavy metals[J]. Journal of the American Chemical Society, 2013, 135(36): 13238-13241. DOI: 10.1021/ja404653q.
38 Perry R J, Zhang D Y, Zhang X M, et al. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats[J]. Science, 2015, 347(6227): 1253-1256. DOI: 10.1126/science.aaa0672.
39 Belkin M, Aksimentiev A, Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12599-12608. DOI: 10.1021/acsami.6b00463.
40 Mei C Y, Lin D J, Fan C C, et al. Highly sensitive and selective electrochemical detection of Hg2+ through surface-initiated enzymatic polymerization[J]. Biosensors and Bioelectronics, 2016, 80: 105-110. DOI: 10.1021/acsami.6b00463.
41 CHEN Piaopiao, WU Peng, CHEN Junbo, et al. Label-free and separation-free atomic fluorescence spectrometry-based bioassay: sensitive determination of single-strand DNA, protein, and double-strand DNA[J]. Analytical Chemistry, 2016, 88(4): 2065-2071. DOI: 10. 1021/acs.analchem.5b03307.
42 Jia J, Chen H G, Feng J, et al. A regenerative ratiometric electrochemical biosensor for selective detecting Hg2+ based on Y-shaped/hairpin DNA transformation[J]. Analytica Chimica Acta, 2016, 908: 95-101. DOI: 10. 1016/j.aca.2015.12.028.
43 Lu C H, Guo W W, Hu Y W, et al. Multitriggered shape-memory acrylamide-DNA hydrogels[J]. Journal of the American Chemical Society, 2015, 137(50): 15723-15731. DOI: 10.1021/jacs.5b06510.
44 Kogut M, Kleist C, Czub J. Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad—a common structural unit of G-quadruplex DNA[J]. Nucleic Acids Research, 2016, 44(7): 3020-3030. DOI: 10.1093/nar/gkw160.
45 ZHANG Peng, LIU Hui, MA Suzhen, et al. A label-free ultrasensitive fluorescence detection of viable Salmonella enteritidis using enzyme-induced cascade two-stage toehold strand-displacement-driven assembly of G-quadruplex DNA[J]. Biosensors and Bioelectronics, 2016, 80: 538-542. DOI: 10.1016/j.bios.2016.02.031
46 Esposito V, Pepe A, Filosa R, et al. A novel pyrimidine tetrad contributing to stabilize tetramolecular G-quadruplex structures[J]. Organic & Biomolecular Chemistry, 2016, 14(10): 2938-2943. DOI: 10.1039/C5OB02358K
47 CHENG Hanjun, QIU Xuefeng, ZHAO Xiaozhi, et al. Functional nucleic acid probe for parallel monitoring K+ and Protoporphyrin IX in living organisms[J]. Analytical Chemistry, 2016, 88(5): 2937-2943. DOI: 10.1021/acs. analchem.5b04936.
48 Biagiotti V, Porchetta A, Desiderati S, et al. Rapid and sensitive detection of potassium ion based on K+-induced G-quadruplex and guanine chemiluminescence[J]. Analytical and Bioanalytical Chemistry, 2016, 408(7): 1863-1869. DOI: 10.1007/s00216-015-9285-y.
49 Nesterova I V, Nesterov E E. Rational design of highly responsive pH sensors based on DNA i-motif[J]. Journal of the American Chemical Society, 2014, 136(25): 8843-8846. DOI: 10.1021/ja501859w.
50 Idili A, Amodio A, Vidonis M, et al, Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity[J]. Analytical Chemistry, 2014, 86: 9013-9019. DOI: 10.1021/ac501418g.
51 Fu B S, Huang J G, Bai D S, et al. Label-free detection of pH based on the i-motif using an aggregation-caused quenching strategy[J]. Chemical Communications, 2015, 51(95): 16960-16963. DOI: 10.1039/C5CC04784F.
52 Porchetta A, Vallee-Belisle A, Plaxco K W, et al, Using distal-site mutations and allosteric inhibition to tune, extend, and narrow the useful dynamic range of aptamer-based sensors[J]. Journal of the American Chemical Society, 2012, 134(51): 20601-20604. DOI: 10. 1021/ja310585e
53 Vallée-Bélisle, Ricci A F, Plaxco K W. Engineering biosensors with extended, narrowed, or arbitrarily edited dynamic range[J]. Journal of the American Chemical Society, 2011, 134(6): 2876-2879. DOI: 10.1021/ja209850j.
54 Idili A, Plaxco K W, Vallée-Bélisle A R, et al. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches[J]. ACS Nano, 2013, 7(12): 10863-10869. DOI: 10.1021/nn404305e.
55 谢丽华, 张晓红, 胡晓丹, 等. 血清铁生物剂量计的可行性研究[J]. 辐射研究与辐射工艺学报, 2016, 34(1): 010501. DOI: 10.11889/j.1000-3436.2016.rrj.34.010501.XIE Lihua, ZHANG Xiaohong, HU Xiaodan, et al. Development of a new biodosimetry of serum iron[J]. Journal of Radiation Research and Radiation Processing, 2016, 34(1): 010501. DOI: 10.11889/j.1000-3436.2016. rrj.34.010501.
56 Böcker W, Iliakis G. Computational methods for analysis of foci: validation for radiation-induced γ-H2AX foci in human cells[J]. Radiation Research, 2006, 165(1): 113-124. DOI: 10.1667/RR3486.1
57 Kuo L J, Yang L X. Gamma-H2AX-a novel biomarker for DNA double-strand breaks[J]. In Vivo, 2008, 22(3): 305-309.
58 Szumiel I. Ionising radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria[J]. International Journal of Radiation Biology, 2014, 17: 1-55. DOI: 10.3109/09553002.2014. 934929.
59 杨晨, 章婷婷, 陈莹, 等. DAB2IP 基因沉默引起的前列腺癌细胞辐射耐受与ATM 的相关性研究[J]. 辐射研究与辐射工艺学报, 2015, 33(2): 020203. DOI: 10.11889/j.1000-3436.2015.rrj.33.020203.YANG Chen, ZHANG Tingting, CHEN Ying, et al. Relationship between expression level of ATM and DAB2IP-knockdown induced radio-resistance in prostate cancer cells[J]. Journal of Radiation Research and Radiation Processing, 2015, 33(2): 020203. DOI: 10. 11889/j.1000-3436.2015.rrj.33.020203. |